Advertisement

Metals and Materials International

, Volume 24, Issue 6, pp 1202–1212 | Cite as

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Junyu Tian
  • Guang Xu
  • Zhengyi Jiang
  • Haijiang Hu
  • Mingxing Zhou
Article
  • 171 Downloads

Abstract

The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and 250 °C), while it shows no significant difference at lower austempering temperature (200 °C). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of 220 °C. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

Keywords

Nickle Bainite transformation Austempering process Tranformation time Property 

Abbreviations

RA

Retained austenite

BS

Bainite starting temperature

MS

Martensite starting temperature

Ac3

Austenitization finishing temperature during heating

SEM

Scanning electron microscope

XRD

X-ray diffraction

M/A

Martensite/austenite island

YS

Yield strength

TS

Tensile strength

TE

Total elongation

PSE

Product of the tensile strength and total elongation

CCT

Continuous cooling transformation

TTT

Time–temperature–transformation

TRIP

Transformation induced plasticity

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports from the Major Projects of Technological Innovation in Hubei (No. 2017AAA116), the National Natural Science Foundation of China (No. 51274154) and the National Nature Science Foundation of China (No. 51704217).

References

  1. 1.
    F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Zhao, J.M. Li, H.H. Ji, T.S. Wang, Materials 10, 874 (2017)CrossRefGoogle Scholar
  3. 3.
    L.X. Li, L.Y. Zheng, B. Ye, Z.Q. Tong, Met. Meter. Int. 24, 60 (2018)CrossRefGoogle Scholar
  4. 4.
    C. Garcia-mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 285 (2003)Google Scholar
  5. 5.
    F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18, 279 (2002)CrossRefGoogle Scholar
  6. 6.
    J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7, 40 (2017)CrossRefGoogle Scholar
  7. 7.
    H.J. Hu, G. Xu, M.X. Zhou, Q. Yuan, Metals 6, 173 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Keehan, L. Karlsson, H.O. Andrén, H.K.D.H. Bhadeshia, Weld. J. 85, 200 (2006)Google Scholar
  9. 9.
    E. Keehan, H.O. Andrén, L. Karlsson, M. Murugananth, H.K.D.H. Bhadeshia, in 6th International Conference on Trends in Welding Research, ed. by S.A. David, T. DebRoy, J.C. Lippold (ASM International, Phoenix, 2002), p. 695Google Scholar
  10. 10.
    J.A. Omotoyinbo, O.O. Oluwole, Mater. Des. 30, 335 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Zhang, P. Wang, D. Li, Y. Li, Mater. Des. 84, 385 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.L. Chen, C.Z. Dong, Q.W. Cai, D.C. Wan, L. Li, Y. Qi, J. Mater. Eng. 3, 16 (2013)Google Scholar
  13. 13.
    X.Y. Long, F.C. Zhang, J. Kang, B. Lv, X.B. Shi, Mater. Sci. Eng. A 594, 344 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Kobayashi, D. Ina, N. Yoshikawa, S. Koh-Ichi, ISIJ Int. 52, 1894 (2012)CrossRefGoogle Scholar
  15. 15.
    L.C. Chang, Metall. Mater. Trans. A 30, 909 (1999)CrossRefGoogle Scholar
  16. 16.
    L.H. Qian, Q. Zhou, F.C. Zhang, J.Y. Meng, M. Zhang, Y. Tian, Mater. Des. 39, 264 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Hu, K.M. Wu, H. Zheng, Steel Res. Int. 84, 1060 (2013)Google Scholar
  18. 18.
    M.X. Zhou, G. Xu, L. Wang, H.J. Hu, Trans. Indian Inst. Met. 69, 693 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Baradari, M.A. Boutorabi, Mater. Des. 86, 603 (2015)CrossRefGoogle Scholar
  20. 20.
    M.X. Zhou, G. Xu, J.Y. Tian, H.J. Hu, Q. Yuan, Metals 7, 263 (2017)CrossRefGoogle Scholar
  21. 21.
    J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Steel Res. Int. (2018).  https://doi.org/10.1002/srin.201700469 CrossRefGoogle Scholar
  22. 22.
    M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, Steel Res. Int. (2016).  https://doi.org/10.1002/srin.201600377 CrossRefGoogle Scholar
  23. 23.
    B. Ozturk, V.L. Fearing, J.A. Ruth, G. Simkovich, Solid State Ionics 12, 145 (1984)CrossRefGoogle Scholar
  24. 24.
    C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527, 3442 (2010)CrossRefGoogle Scholar
  25. 25.
    D. Quidort, Y. Bréchet, Scripta Mater. 47, 151 (2002)CrossRefGoogle Scholar
  26. 26.
    J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, H.J. Hu, Trans. Indian Inst. Met. 71, 185 (2018)CrossRefGoogle Scholar
  27. 27.
    H.J. Hu, G. Xu, L. Wang, M.X. Zhou, Z.L. Xue, Met. Mater. Int. 21, 929 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Garcia-Mateo, M. Peet, F.G. Caballero, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20, 814 (2014)CrossRefGoogle Scholar
  29. 29.
    C. García-Mateo, F.G. Caballero, Mater. Trans. 46, 1839 (2005)CrossRefGoogle Scholar
  30. 30.
    B.C.D. Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004)CrossRefGoogle Scholar
  31. 31.
    M. Pozuelo, J.E. Wittig, J.A. Jiménez, G. Frommeyer, Metal. Mater. Trans. A 40, 1826 (2009)CrossRefGoogle Scholar
  32. 32.
    G. Mandal, C. Roy, S.K. Ghosh, S. Chatterjee, J. Alloys Compd. 705, 817 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced SteelsWuhan University of Science and TechnologyWuhanChina
  2. 2.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  3. 3.School of Mechanical and Automotive EngineeringNanyang Institute of TechnologyNanyangChina

Personalised recommendations