Skip to main content
Log in

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich M23C6, and most of them are V-rich MC, only very few are Cr-rich M23C6. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.  5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.K. Rafi, G.D.J. Ram, G. Phanikumar, K.P. Rao, Mater. Des. 32, 82 (2011)

    Article  CAS  Google Scholar 

  2. B.A. Beatrice, E. Kirubakaran, P.R.J. Thangaiah, K.L.D. Wins, Proc. Eng. 97, 205 (2014)

    Article  CAS  Google Scholar 

  3. S.-H. Yeh, L.-H. Chiu, Y.-T. Pan, S.-C. Lin, J. Mater. Eng. Perform. 23, 2075 (2014)

    Article  CAS  Google Scholar 

  4. L.A. Dobrzański, J. Mazurkiewicz, E. Hajduczek, J. Mater. Process. Technol. 157–158, 472 (2004)

    Article  Google Scholar 

  5. R. Sola, R. Giovanardi, G. Parigi, P. Veronesi. Metals 7(3)

  6. Sola R, Poli G, Defani S, Parigi G, Veronesi P (2015) European conference on heat treatment 2015 and 22nd IFHTSE congress—heat treatment and surface engineering from tradition to innovation

  7. T-s Li, F-m Wang, C-r Li, G-q Zhang, Q-y Meng, J. Iron. Steel Res. Int. 22(4), 330–336 (2015)

    Article  Google Scholar 

  8. J. Li, C. Zhang, B. Jiang, L. Zhou, Y. Liu, J. Alloy. Compd. 685(248-5), 7 (2016)

    Article  Google Scholar 

  9. M. Kang, G. Park, J.-G. Jung, B.-H. Kim, Y.-K. Lee, J. Alloy. Compd. 627, 359 (2015)

    Article  CAS  Google Scholar 

  10. L. Lan, X. Kong, C. Qiu, Mater. Charact. 105(95-10), 3 (2015)

    Google Scholar 

  11. G.K. Kariofillis, G.E. Kiourtsidis, D.N. Tsipas, Surf. Coat. Technol. 201(1–2), 19–24 (2006)

    Article  CAS  Google Scholar 

  12. N. Fujita, Bhadeshia HKDH 42(7), 760–769 (2002)

    CAS  Google Scholar 

  13. M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, S.V.D. Zwaag, Moscow Mathematical Journal 12(3), 469–495 (1996)

    Google Scholar 

  14. C.G. Andres, F.G. Caballero, C. Capdevila et al., Mater. Charact. 48, 101–111 (2002)

    Article  Google Scholar 

  15. F. Sommer, E.J. Mittemeijer, Mater. Sci. Technol. 16(6), 625–629 (2000)

    Article  Google Scholar 

  16. T.A. Kop, J. Sietsma, S. Van Der Zwaag, J. Mater. Sci. 36(2), 519–526 (2001)

    Article  CAS  Google Scholar 

  17. S. Choi, Mater. Sci. Eng., A 363(1–2), 72–80 (2003)

    Article  Google Scholar 

  18. S.-J. Lee, M.-T. Lusk, Y.-K. Lee, Acta Mater. 55(3), 875–882 (2007)

    Article  CAS  Google Scholar 

  19. Garcı́a de Andrés C, Capdevila C, Caballero FG, Bhadeshia HKDH (1998) Scripta Materialia 39(7), 853–859

  20. M. Mahajan, K. Singh, O.P. Pandey, Int. J. Refract Metal Hard Mater. 36, 106–111 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, C., Han, L. et al. A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel. Met. Mater. Int. 24, 1193–1201 (2018). https://doi.org/10.1007/s12540-018-0138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0138-z

Keywords

Navigation