Skip to main content
Log in

Effect of TiC Nanoparticles Supported by Ti Powders on the Solidification Behavior and Microstructure of Pure Aluminum

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A novel grain refiner consisting of TiC nanoparticles (NPs) supported by Ti powders (abbr. TiC/Ti refiner) was prepared by high-energy milling. The addition of 0.5 wt% TiC/Ti refiner converted the structure of pure Al from coarse dendrites to fine equiaxed grains with the average grain size of 114.7 μm, and it also increased the nucleation temperature of α(Al) from 656.7 to 664.4 °C. When TiC/Ti refiner was introduced into Al melt, the heat released from the Al–Ti reaction promoted the uniform dispersion of TiC NPs. The dissolution of the reaction product TiAl3 released Ti atoms into the melt and thus formed a “Ti-rich transition region” around TiC NPs. The dispersive TiC NPs could act as the heterogeneous nuclei for α(Al) and the “Ti-rich transition region” further improved the lattice orientation relationship between Al (\(\bar{1}1\bar{1}\)) and TiC (\(11\bar{1}\)) planes, which eventually resulted in the refining of α(Al).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Cui, Y. Wu, X. Liu, Q. Zhao, G. Zhang, Mater. Des. 86, 397 (2015)

    Article  Google Scholar 

  2. M. Easton, D. Stjohn, Metall. Mater. Trans. A 30, 1613 (1999)

    Article  Google Scholar 

  3. P. Li, S. Liu, L. Zhang, X. Liu, Mater. Des. 47, 522 (2013)

    Article  Google Scholar 

  4. M.A. Easton, D.H. St. John, Acta Mater. 49, 1867 (2001)

    Article  Google Scholar 

  5. Y. Han, K. Li, J. Wang, D. Shu, B. Sun, Mater. Sci. Eng. A 405, 306 (2005)

    Article  Google Scholar 

  6. Z. Fang, Y. Yang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater. 84, 292 (2015)

    Article  Google Scholar 

  7. S.M. Jigajinni, K. Venkateswrlu, S.A. Kori, Met. Mater. Int. 19, 171 (2013)

    Article  Google Scholar 

  8. S.A. Kori, B.S. Murty, M. Chakraborty, Mater. Sci. Eng. A 280, 58 (2000)

    Article  Google Scholar 

  9. X.F. Liu, Z.Q. Wang, Z.G. Zhang, X.F. Bian, Mater. Sci. Eng. A 332, 70 (2002)

    Article  Google Scholar 

  10. K. Svynarenko, Y.B. Zhang, J.C. Jie, V. Kutsova, T.J. Li, Met. Mater. Int. 23, 788 (2017)

    Article  Google Scholar 

  11. K. Svynarenko, Y.B. Zhang, J.C. Jie, V. Kutsova, T.J. Li, Met. Mater. Int. 23, 994 (2017)

    Article  Google Scholar 

  12. A. Banerji, W. Reif, Mat. Trans. A 17, 2127 (1986)

    Article  Google Scholar 

  13. H.S. Choi, X.C. Li, J. Mater. Sci. 47, 3096 (2012)

    Article  Google Scholar 

  14. A. Mazahery, H. Abdizadeh, H.R. Baharvandi, Mater. Sci. Eng. A 518, 61 (2009)

    Article  Google Scholar 

  15. S. Fale, A. Likhite, J. Bhatt, Trans. Indian Inst. Met. 68, 291 (2015)

    Article  Google Scholar 

  16. M. Esturga, L.Y. Chen, H.S. Choi, X.C. Li, S. Jin, Appl. Mater. Interfaces 5, 8813 (2013)

    Article  Google Scholar 

  17. K. Wang, H.Y. Jiang, Q.D. Wang, B. Ye, W.J. Ding, J. Mater. Charact. 117, 41 (2016)

    Article  Google Scholar 

  18. G. Levi, W.D. Kaplan, M. Bamberger, Mater. Sci. Eng. A 326, 288 (2002)

    Article  Google Scholar 

  19. M.P.D. Cicco, L.S. Turng, X.C. Li, J.H. Perepezko, Mat. Trans. A 42, 2323 (2011)

    Article  Google Scholar 

  20. H. Su, W.L. Gao, Z.H. Feng, Z. Lu, Mater. Des. 36, 590 (2012)

    Article  Google Scholar 

  21. X. Li, Y. Yang, X. Cheng, J. Mater. Sci. 39, 3211 (2004)

    Article  Google Scholar 

  22. C.A. León, R.A.L. Drew, Compos. Part A Appl. S 33, 1429 (2002)

    Article  Google Scholar 

  23. J.P. Rocher, J.M. Quenisset, R. Naslain, J. Mater. Sci. 24, 2697 (1989)

    Article  Google Scholar 

  24. S. Cai, Y. Li, Y. Chen, X. Li, L. Xue, T. Nonferr, Metal. Soc. 23, 1890 (2013)

    Google Scholar 

  25. X. Li, Q. Cai, B. Zhao, Y. Xiao, B. Li, J. Alloys Compd. 675, 201 (2016)

    Article  Google Scholar 

  26. M. Easton, D. Stjohn, Metall. Mater. Trans. A 30, 1625 (1999)

    Article  Google Scholar 

  27. D. Zhang, D. Ying, Mater. Sci. Eng. A 301, 90 (2011)

    Article  Google Scholar 

  28. V.I. Nikitin, J.I.E. Wanqi, E.G. Kandalova, A.G. Makarenko, L. Yong, Scr. Mater. 42, 561 (2000)

    Article  Google Scholar 

  29. B.L. Smith, P.R. Gardner, E.H.C. Parker, J. Chem. Phys. 47, 1148 (1967)

    Article  Google Scholar 

  30. W.A. Zisma, Adv. Chem. 43, 1 (1964)

    Article  Google Scholar 

  31. M. Jamshidi, F.A. Taromi, J. Adhes. Sci. Technol. 21, 169 (2007)

    Article  Google Scholar 

  32. H. Kamusewitz, W. Possart, Appl. Phys. A Mater. 76, 899 (2003)

    Article  Google Scholar 

  33. S.K. Rhee, J. Am. Ceram. Soc. 53, 386 (1970)

    Article  Google Scholar 

  34. D. Batalu, G. Cosmeleata, A. Aloman, UPB Sci. Bull. 68, 77 (2006)

    Google Scholar 

  35. M.M. Guzowski, G.K. Sigworth, D.A. Sentner, Metall. Mater. Trans. A 18, 603 (1987)

    Article  Google Scholar 

  36. Z. Luo, Y. Song, S. Zhang, D.J. Miller, Metall. Mater. Trans. A 43, 281 (2012)

    Article  Google Scholar 

  37. T. Yano, H. Suematsu, T. Iseki, J. Mater. Sci. 23, 3362 (1988)

    Article  Google Scholar 

  38. B.L. Bramfitt, Metall. Trans. 1, 1987 (1970)

    Article  Google Scholar 

  39. M. Li, H. Zhai, Z. Huang, X. Liu, Y. Zhou, S. Li, C. Li, Mater. Sci. Eng. A 588, 335 (2013)

    Article  Google Scholar 

  40. B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, Mater. Sci. Eng. A 425, 192 (2006)

    Article  Google Scholar 

  41. R. Mitra, W.A. Chiou, M.E. Fine, J.R. Weertman, J. Mater. Res. 8, 2380 (1993)

    Article  Google Scholar 

  42. L. Yu, X. Liu, J. Mater. Process Tech. 182, 519 (2007)

    Article  Google Scholar 

  43. P.S. Mohanty, J.E. Gruzleski, Acta Mater. 43, 2001 (1995)

    Article  Google Scholar 

  44. T.E. Quested, J. Mater. Sci. Technol. 20, 1357 (2004)

    Article  Google Scholar 

  45. J. Qin, G. Chen, B. Wang, N. Hu, F. Han, Z. Du, J. Alloys Compd. 653, 32 (2015)

    Article  Google Scholar 

  46. N.L. Yue, L. Lu, M.O. Lai, Compos. Struct. 47, 691 (1999)

    Article  Google Scholar 

  47. T. Chen, R. Wang, Y. Ma, Y. Hao, Mater. Des. 34, 637 (2012)

    Article  Google Scholar 

  48. V.H. López, A. Scoles, A.R. Kennedy, Mater. Sci. Eng. A 356, 316 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Important National Science and Technology Specific Project of China (No. 2012ZX04010-081). The authors would also thank the support from State Key Laboratory of Material Processing and Die & Mould Technology and Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhou Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Cai, Q., Li, X. et al. Effect of TiC Nanoparticles Supported by Ti Powders on the Solidification Behavior and Microstructure of Pure Aluminum. Met. Mater. Int. 24, 945–954 (2018). https://doi.org/10.1007/s12540-018-0122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0122-7

Keywords

Navigation