Structure and Stoichiometry of MgxZny in Hot-Dipped Zn–Mg–Al Coating Layer on Interstitial-Free Steel



Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn–Mg–Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn–Mg–Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b = 0.5252 nm, c = 0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a = 0.8575 nm, b = 0.8874 nm, c = 0.8771 nm) in the equilibrium state.


Zn–Mg–Al coating Mg2Zn11 Base-centered orthorhombic TEM-SAED CALPHAD 



This work was supported by a Grant from POSCO Korea.


  1. 1.
    POSCO, PosMAC-Magnesium Aluminum Alloy Coating Product Brochure (2016).
  2. 2.
    Nisshin-steel, ZAM ® Product Brochure (2013).
  3. 3.
    Steel Institute VDEh, ZincMagnesiumAluminium Coatings for Automotive Industry (2013).
  4. 4.
    Nippon Steel and Smitomometal, SuperDyma Product Brochure (2012).
  5. 5.
  6. 6.
    S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, A.C. Kneissl, Corros. Sci. 51, 2355 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Uranaka, T. Shimizu, Metall. Sci. Technol. 30–1, 29 (2012)Google Scholar
  8. 8.
    L. Jiang, P. Volovitch, M. Wolpers, K. Ogle, Corros. Sci. 60, 256 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Schürz, G.H. Luckeneder, M. Fleischanderl, P. Mack, H. Gsaller, A.C. Kneissl, G. Mori, Corros. Sci. 52, 3271 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Ishikawa, M. Ueda, K. Kandori, T. Nakayama, Corros. Sci. 49, 2547 (2007)CrossRefGoogle Scholar
  11. 11.
    N. LeBozec, D. Thierry, A. Peltola, L. Luxem, G. Luckeneder, G. Marchiaro, M. Rohwerder, Mater. Corros. 64, 969 (2013)CrossRefGoogle Scholar
  12. 12.
    M.S. Oh, S.H. Kim, J.S. Kim, J.W. Lee, J.H. Shon, Y.S. Jin, Met. Mater. Int. 22, 26 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Brennan, K. Bermudez, N. Kulkarni, Y.H. Sohn, Diffusion couple investigation of the Mg–Zn system, in Magnesium Technology (Wiley, Hoboken, 2012), pp. 323–327Google Scholar
  14. 14.
    A. Mostafa, M. Medraj, J. Mater. Res. 29, 1463 (2014)CrossRefGoogle Scholar
  15. 15.
    C.C. Kammerer, S. Behdad, L. Shou, F. Betancor, M. Gonzalez, B. Boesl, Intermetallics 67, 145 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Commenda, J. Pühringer, Mater. Charact. 61, 943 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Vlot, M. Zuijderwijk, M. Toose, L. Elliott, R. Bleeker, T. Maalman, in Galvatech’07 Conference Proceedings, ed. by T. Tsuru (Iron and Steel Institute of Japan, Tokyo, 2007), p. 574Google Scholar
  18. 18.
    J.B. Clark, L. Zabdyr, Z. Moser, Phase Diagrams of Binary Magnesium Alloys (ASM, Metals Park, 1988), pp. 353–364Google Scholar
  19. 19.
    X. Gao, J.F. Nie, Scr. Mater. 57, 655 (2007)CrossRefGoogle Scholar
  20. 20.
    R. Cerny, G. Renaudin, Acta Cryst. C58, 154 (2002)Google Scholar
  21. 21.
    I. Higashi, N. Shiotani, M. Uda, J. Solid State Chem. 36, 225 (1981)CrossRefGoogle Scholar
  22. 22.
    J. Gallot, R. Graf, C. R. 262B, 1219 (1966)Google Scholar
  23. 23.
    Y. Khan, J. Mater. Sci. 24, 963 (1989)CrossRefGoogle Scholar
  24. 24.
    M. Dutta, A.K. Halder, S.B. Singh, Surf. Coat. Technol. 205, 2578 (2010)CrossRefGoogle Scholar
  25. 25.
    R.P. Edavan, R. Kopinski, Corros. Sci. 51, 2429 (2009)CrossRefGoogle Scholar
  26. 26.
    K. Honda, W. Yamada, K. Ushioda, Mater. Trans. 49, 1395 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Okamoto, J. Phase Equilib. Diffus. 34(3), 251 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Samson, Acta Chem. Scand. 3, 835 (1949)CrossRefGoogle Scholar
  29. 29.
    Thermo-Cal Software AB, SSOL5 SGTE Solution Database, Version 5.0, Thermo-Cal Software (2014).
  30. 30.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001), pp. 347–361Google Scholar
  31. 31.
    J. Gondek, M. Babinec, M. Kusý, J. Achiev. Mater. Manuf. Eng. 70(2), 70 (2015)Google Scholar
  32. 32.
    D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Plenum Press, New York, 1996), pp. 239–249CrossRefGoogle Scholar
  33. 33.
    B. Fultz, J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 2nd edn. (Springer, Berlin, 2002), pp. 225–274CrossRefGoogle Scholar
  34. 34.
    R.C. Buchanan, T. Park, Materials Crystal Chemistry (Marcel Dekker, New York, 1997), pp. 146–151Google Scholar
  35. 35.
    C. Giacovazzo, H.L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, M. Catti, Fundamentals of Crystallography, 2nd edn. (Oxford University Press, New York, 2002), pp. 239–249Google Scholar
  36. 36.
    E. Gamsjager, T. Antretter, C. Schmaranzer, W. Preis, C.M. Chimani, N.K. Simha, J. Svoboda, F.D. Fischer, Comput. Mater. Sci. 25, 92 (2002)CrossRefGoogle Scholar
  37. 37.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001), pp. 363–383Google Scholar
  38. 38.
    H. Lipson, Acta Cryst. 2, 43 (1949)CrossRefGoogle Scholar
  39. 39.
    N.A. Razik, G.E. Barakati, M.A. Momen, Acta Phys. Hung. 67, 177 (1990)Google Scholar
  40. 40.
    B.E. Warren, X-ray Diffraction (Addison-Wesley, Massachusetts, 1990), pp. 28–57Google Scholar
  41. 41.
    K.C. Seymour, D. Ribero, S.J. McCormack, W.M. Kevin, J. Am. Ceram. Soc. 99, 3739 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018
corrected publication 04/2018

Authors and Affiliations

  1. 1.Graduate Institute of Ferrous Technology (GIFT)Pohang University of Science and Technology (POSTECH)Nam-Gu PohangKorea

Personalised recommendations