Three Distinct Deformation Behaviors of Cementite Lamellae in a Cold-Drawn Pearlitic Wire

  • Tuo Xin
  • Guiju Liu
  • Wenshuang Liang
  • Rongsheng Cai
  • Honglei Feng
  • Chen Li
  • Jian Li
  • Yiqian Wang


High-resolution transmission electron microscopy is used to investigate the deformation behaviors of cementite lamellae in the heavily cold-drawn piano wires. Three distinct morphologies of cementite are observed, namely, complete lamella, partly-broken lamella and nearly-disappeared lamella. For the complete cementite lamella, it remains a single-crystalline structure. For the partly-broken cementite lamella, polycrystalline structure and neck-down region appear to release the residual strain. The lattice expansion of ferrite takes place in two perpendicular directions indicating that the carbon atoms dissolve from cementite into ferrite lattices. An orientation relationship is found between ferrite and cementite phases in the cold-drawn pearlitic wire.


High-resolution transmission electron microscopy Microstructure Deformation Cementite dissolution Orientation relationship 



We would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 10974105) and High-end Foreign Experts Recruitment Programs (Grant Nos. GDW20173500154, GDW20163500110). Y. Q. Wang would also like to thank the financial support from the Top-notch Innovative Talent Program of Qingdao City (Grant No. 13-CX-08), Taishan Scholar Program of Shandong Province, Qingdao International Center for Semiconductor Photoelectric Nanomaterials and Shandong Provincial University Key Laboratory of Optoelectrical Material Physics and Devices.

Supplementary material

12540_2018_101_MOESM1_ESM.doc (102 kb)
Supplementary material 1 (DOC 102 kb)


  1. 1.
    D. Raabe, P. Choi, Y.J. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, D. Embury, MRS Bull. 35, 982 (2010)CrossRefGoogle Scholar
  2. 2.
    X.D. Zhang, A. Godfrey, X.X. Huang, N. Hansen, Q. Liu, Acta Mater. 59, 3422 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi, Scr. Mater. 44, 977 (2001)CrossRefGoogle Scholar
  4. 4.
    W. Lojkowski, M. Djahanbakhsh, G. Bürkle, S. Gierlotka, W. Zielinski, H.-J. Fecht, Mater. Sci. Eng. A 303, 197 (2001)CrossRefGoogle Scholar
  5. 5.
    Y.J. Li, D. Raabe, M. Hernig, P.P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, R. Kirchheim, Phys. Rev. Lett. 113, 106104 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Languillaume, G. Kapelski, B. Baudelet, Mater. Lett. 33, 241 (1997)CrossRefGoogle Scholar
  7. 7.
    W.J. Nam, C.M. Bae, S.J. Oh, S.J. Kwon, Scr. Mater. 42, 457 (2000)CrossRefGoogle Scholar
  8. 8.
    H.G. Read, W.T. Reynolds Jr., K. Hono, T. Tarui, Scr. Mater. 37, 1221 (1997)CrossRefGoogle Scholar
  9. 9.
    D.S. Zhou, G.J. Shiflet, Metall. Mater. Trans. A 23, 1259 (1992)CrossRefGoogle Scholar
  10. 10.
    Y. Adachi, S. Morooka, K. Nakajima, Y. Sugimoto, Acta Mater. 56, 5995 (2008)CrossRefGoogle Scholar
  11. 11.
    M.-X. Zhang, P. Kelly, Scr. Mater. 37, 2009 (1997)CrossRefGoogle Scholar
  12. 12.
    F. Fang, Y.F. Zhao, P.P. Liu, L.C. Zhou, X.J. Hu, X.F. Zhou, Z.H. Xie, Mater. Sci. Eng. A 608, 11 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.-J. Fecht, Acta Mater. 51, 5555 (2003)CrossRefGoogle Scholar
  14. 14.
    J. Languillaume, G. Kapelski, B. Baudelet, Acta Mater. 45, 1201 (1997)CrossRefGoogle Scholar
  15. 15.
    J. Toribio, Mater. Sci. Eng. A 387–389, 227 (2004)CrossRefGoogle Scholar
  16. 16.
    C.W. Bang, J.B. Seol, Y.S. Yang, C.G. Park, Scr. Mater. 108, 151 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Borchers, T. Al-Kassab, S. Goto, R. Kirchheim, Mater. Sci. Eng. A 502, 131 (2009)CrossRefGoogle Scholar
  18. 18.
    X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono, Scr. Mater. 60, 1056 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Todaka, M. Umemoto, A. Ohno, M. Suzuki, Y. Kawabata, K. Tsuchiya, J. Alloys Compd. 434–435, 497 (2007)CrossRefGoogle Scholar
  20. 20.
    C. Zener, Kinetics of the decomposition of austenite. Trans. AIME 167, 550 (1946)Google Scholar
  21. 21.
    V.N. Gridnev, V.V. Nemoshkalenko, Y.Y. Meshkov, V.G. Gavrilyuk, V.G. Prokopenko, O.N. Raumov, Phys. Status Solidi A 31, 201 (1975)CrossRefGoogle Scholar
  22. 22.
    V.G. Gavriljuk, Mater. Sci. Eng. A 345, 81 (2003)CrossRefGoogle Scholar
  23. 23.
    X. Sauvage, J. Copreaux, F. Danoix, D. Blavette, Philos. Mag. A 80, 781 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Tuo Xin
    • 1
  • Guiju Liu
    • 1
  • Wenshuang Liang
    • 1
  • Rongsheng Cai
    • 1
  • Honglei Feng
    • 1
  • Chen Li
    • 1
  • Jian Li
    • 2
  • Yiqian Wang
    • 1
  1. 1.College of Physics and The Cultivation Base for State Key LaboratoryQingdao UniversityQingdaoPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations