Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 802–814 | Cite as

Microstructure, Texture and Mechanical Properties of Titanium Grade 2 Processed by ECAP (Route C)

  • M. Wroński
  • K. Wierzbanowski
  • D. Wojtas
  • E. Szyfner
  • R. Z. Valiev
  • J. Kawałko
  • K. Berent
  • K. Sztwiertnia
Article
  • 53 Downloads

Abstract

In the present work the properties of titanium grade 2 after ECAP processing with original route and regimes (route C, channel angle \(\varPhi\) = 120°, deformation temperature 300 °C, number of passes up to 8) were examined. Texture development and microstructure parameters after ECAP processing and after recrystallization were determined using electron back scatter diffraction and analysed. A significant increase of the mechanical strength accompanied by some increase of ductility was observed in the deformed samples. The kernel average misorientation and average grain orientation spread were strongly increased after deformation, which confirms the material refinement and fragmentation. The proportion of low angle boundaries increased after four ECAP passes, but after four consecutive passes high angle grain boundaries became predominant. No deformation twins were observed after four and eight ECAP passes. The material recrystallized after deformation retained a fine grain microstructure. The textures of deformed and recrystallized samples were determined. It was found that texture after 8 passes is more homogeneous that that after 4 passes, which partly explains higher ductility of this first sample.

Keywords

Metals Severe plastic deformation Electron backscattering diffraction Microstructure Texture 

Notes

Acknowledgements

We thank the Polish National Centre of Science (NCN) for supporting the present work by grant: DEC-2015/19/D/ST8/00818. Also AGH statutory funding No. 11.11.220.01/5 is acknowledged. R. Z. Valiev appreciates the RZV Grant No 14.B25.31.0017 from the Russian Federal Ministry for Education and Science.

References

  1. 1.
    L. Mishnaevsky Jr., E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, E. Gutmanas, I. Gotman, E. Rabkin, S. Psakh’e, L. Dluhos, M. Seefeldt, A. Smolin, Mater. Sci. Eng. R 81, 1 (2014)CrossRefGoogle Scholar
  2. 2.
    R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, Hoboken, 2014)Google Scholar
  3. 3.
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol. 57, 716 (2008)CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103 (2000)CrossRefGoogle Scholar
  5. 5.
    R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)CrossRefGoogle Scholar
  6. 6.
    G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Mater. Sci. Eng. A 382, 30 (2004)CrossRefGoogle Scholar
  7. 7.
    S. Wronski, J. Tarasiuk, B. Bacroix, K. Wierzbanowski, H. Paul, Mater. Charact. 78, 60 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, K.J. Kurzydlowski, J. Mat. Proc. Technol. 205, 173 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Saito, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39, 1221 (1998)CrossRefGoogle Scholar
  10. 10.
    A. Korbel, W. Bochniak, J. Mater. Process. Technol. 134, 120 (2003)CrossRefGoogle Scholar
  11. 11.
    A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci. 53, 893 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Wroński, K. Wierzbanowski, M. Wrobel, S. Wronski, B. Bacroix, Met. Mater. Int. 21, 805 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Wronski, K. Wierzbanowski, S. Wronski, B. Bacroix, M. Wróbel, A. Uniwersał, I.O.P.C. Ser, Mat. Sci. Eng. 82, 012074 (2015)Google Scholar
  14. 14.
    S. Wroński, K. Wierzbanowski, B. Bacroix, M. Wróbel, E. Rauch, F. Montheillet, M. Wroński, Arch. Metall. Mater. 54, 89 (2009)Google Scholar
  15. 15.
    S. Wronski, M. Wrobel, A. Baczmanski, K. Wierzbanowski, Mater. Charact. 77, 116 (2013)CrossRefGoogle Scholar
  16. 16.
    G.S. Dyakonov, E. Zemtsova, S. Mironov, I.P. Semenova, R.Z. Valiev, S.L. Semiatin, Mater. Sci. Eng. A 648, 305 (2015)CrossRefGoogle Scholar
  17. 17.
    D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, R.Z. Valiev, Mater. Sci. Eng. A 562, 128 (2013)CrossRefGoogle Scholar
  18. 18.
    M.J. Qarni, G. Sivaswamy, A. Rosochowski, S. Boczkal, Mater. Sci. Eng. A 699, 31 (2017)CrossRefGoogle Scholar
  19. 19.
    S.D. Terhune, D.L. Swisher, K. Oh-Ishi, Z. Horita, T.G. Langdon, T.R. McNelley, Metall. Mater. Trans. A 33, 2173 (2002)CrossRefGoogle Scholar
  20. 20.
    L.S. Tóth, R. Arruffat Massion, L. Germain, S.C. Baik, S. Suwas, Acta Mater. 52, 1885 (2004)CrossRefGoogle Scholar
  21. 21.
    S. Suwas, R. Arruffat-Massion, L.S. Tóth, A. Eberhardt, J.-J. Fundenberger, W. Skrotzki, Metall. Mater. Trans. A 37, 739 (2006)CrossRefGoogle Scholar
  22. 22.
    W. Skrotzki, N. Scheerbaum, C.-G. Oertel, R. Arruffat-Massion, S. Suwas, L.S. Toth, Acta Mater. 55, 2013 (2007)CrossRefGoogle Scholar
  23. 23.
    I. Beyerlein, L.S. Tóth, C.N. Tome, S. Suwas, Phil. Mag. 87, 885 (2007)CrossRefGoogle Scholar
  24. 24.
    De J. Messemaeker, B. Verlinden, J. Van Humbeeck, Acta Mater. 53, 4245 (2005)CrossRefGoogle Scholar
  25. 25.
    A. Bhaumik, S. Biswas, S. Suwas, R.K. Ray, D. Bhattacharjee, Metall. Mater. Trans. A 40A, 2729 (2009)CrossRefGoogle Scholar
  26. 26.
    A.A. Gazder, F. Dalla Torre, C.F. Gu, C.H.J. Davies, E.V. Pereloma, Mat. Sci. Eng. A 415, 126 (2006)CrossRefGoogle Scholar
  27. 27.
    A.A. Gazder, W. Cao, C.H.J. Davies, E.V. Pereloma, Sci. Eng. A 497, 341 (2008)CrossRefGoogle Scholar
  28. 28.
    S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, C.H.J. Davies, Acta Mater. 54, 1087 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Suwas, G. Gottstein, R. Kumar, Mat. Sci. Eng. A 471, 1 (2007)CrossRefGoogle Scholar
  30. 30.
    B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, J.-J. Fundenberger, Acta Mater. 56, 200 (2008)CrossRefGoogle Scholar
  31. 31.
    S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown, Scr. Mater. 50, 377 (2004)CrossRefGoogle Scholar
  32. 32.
    S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, P.K. Liaw, Acta Mater. 53, 3135 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Biswas, S.S. Dhinwal, A. Bhowmik, S. Suwas, Mater. Sci. Forum 343, 584 (2008)Google Scholar
  34. 34.
    Y. Zhang, R.B. Figueiredo, S.N. Alhajeri, J. Tao Wang, N. Gao, T.G. Langdon, Mat. Sci. Eng. A 528, 7708 (2011)CrossRefGoogle Scholar
  35. 35.
    X. Zhao, X. Yang, X. Liu, X. Wang, T.G. Langdon, Mat. Sci. Eng. A 527, 6335 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Xirong, Z. Xicheng, F. Wenjie, Rare Metal Mat. Eng. 38, 955 (2009)CrossRefGoogle Scholar
  37. 37.
    S. Suwas, B. Beausir, L.S. Tóth, J.-J. Fundenberger, G. Gottstein, Acta Mater. 59, 1121 (2011)CrossRefGoogle Scholar
  38. 38.
    G.S. Dyakonov, C.F. Gu, L.S. Toth, R.Z. Valiev, I.P. Semenova, I.O.P. C, Ser. Mat. Sci. Eng. 63, 012067 (2014)Google Scholar
  39. 39.
    Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, P.C. Skaret, H.J. Roven, Mater. Sci. Eng. A 527, 789 (2010)CrossRefGoogle Scholar
  40. 40.
    Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, S.S. Gireesh, S. Armada, P.C. Skaret, H.J. Roven, Scr. Mater. 64, 904 (2011)CrossRefGoogle Scholar
  41. 41.
    X. Sun, Y. Guo, Q. Wei, Y. Li, S. Zhang, Mater. Sci. Eng. A 669, 226 (2016)CrossRefGoogle Scholar
  42. 42.
    K. Piękoś, J. Tarasiuk, K. Wierzbanowski, B. Bacroix, Comp. Mat. Sci. 42, 584 (2008)CrossRefGoogle Scholar
  43. 43.
    K. Wierzbanowski, J. Tarasiuk, B. Bacroix, K. Sztwiertnia, P. Gerber, Recrystallization Textures—Two Types of Modelling. Met. Mater. Int. 9, 9 (2003)CrossRefGoogle Scholar
  44. 44.
    M. Marciszko, A. Baczmański, K. Wierzbanowski, M. Wróbel, C. Braham, J.-P. Chopart, A. Lodini, J. Bonarski, L. Tarkowski, N. Zazi, Appl. Surf. Sci. 266, 256 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Baczmański, N. Hfaiedh, M. François, K. Wierzbanowski, Mater. Sci. Eng. A 501, 153 (2009)CrossRefGoogle Scholar
  46. 46.
    K. Kowalczyk-Gajewska, K. Sztwiertnia, J. Kawałko, K. Wierzbanowski, M. Wronski, K. Frydrych, S. Stupkiewicz, H. Petryk, Mat. Sci. Eng. A 637, 251 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • M. Wroński
    • 1
  • K. Wierzbanowski
    • 1
  • D. Wojtas
    • 1
  • E. Szyfner
    • 1
  • R. Z. Valiev
    • 2
    • 3
  • J. Kawałko
    • 4
  • K. Berent
    • 4
  • K. Sztwiertnia
    • 5
  1. 1.AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakówPoland
  2. 2.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussian Federation
  3. 3.Laboratory for Mechanics of Bulk NanomaterialsSaint Petersburg State UniversitySaint PetersburgRussia
  4. 4.AGH University of Science and Technology, Academic Centre for Materials and NanotechnologyKrakówPoland
  5. 5.Institute of Metallurgy and Materials Science, Polish Academy of SciencesKrakówPoland

Personalised recommendations