Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 894–903 | Cite as

Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al–SiCp Composite

  • Hyungsoo Lee
  • Jin Hyeok Choi
  • Min Chul Jo
  • Ilguk Jo
  • Sang-Kwan Lee
  • Sunghak Lee
Article

Abstract

A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al–SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg–Si-, Al–Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s−1 than in the specimen tested at 1400 s−1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9–11.6%) as well as maximum compressive strength (1057–1147 MPa). Thus, the present bimodal 7075 Al–SiCp composite provides a promise for new applications to high-performance armor plates.

Keywords

7075 Al alloy matrix composite SiC particulate Liquid pressing process Dynamic compressive test Shear band Melting of Al matrix 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant (No. 2014M3C1A9060722).

References

  1. 1.
    F. Rostam-Abadi, C.-M. Chen, N. Kikuchi, Comput. Struct. 76, 319 (2000)CrossRefGoogle Scholar
  2. 2.
    M.J.N. Jacobs, J.L.J. Van Dingenen, J. Mater. Sci. 36, 3137 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Bhatnagar, Lightweight ballistic composites: military and law-enforcement applications, 2nd edn. (Woodhead Publishing Limited, Cambridge, 2006)CrossRefGoogle Scholar
  4. 4.
    M. Grujicic, W.C. Bell, L.L. Thompson, K.L. Koudela, B.A. Chesseman, Mater. Sci. Eng. A 479, 10 (2008)CrossRefGoogle Scholar
  5. 5.
    S.J. Pérez-Bergquist, G.T. Gray, E.K. Cerreta, C.P. Trujillo, A. Pérez-Bergquist, Mater. Sci. Eng. A 528, 8733 (2011)CrossRefGoogle Scholar
  6. 6.
    A.P. Mouritz, Compos. Part B 32, 431 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Straßburger, J. Eur. Ceram. Soc. 29, 267 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Aydin, M.K. Apalak, Mater. Sci. Eng. A 671, 107 (2016)CrossRefGoogle Scholar
  9. 9.
    E.E. Haro, A.G. Odeshi, J.A. Szpunar, Int. J. Impact Eng. 96, 11 (2016)CrossRefGoogle Scholar
  10. 10.
    E.E. Haro, J.A. Szpunar, A.G. Odeshi, Compos. Part A 87, 54 (2016)CrossRefGoogle Scholar
  11. 11.
    I. Jo, S. Cho, H. Kim, B.M. Jung, S.-K. Lee, S.-B. Lee, Scr. Mater. 112, 87 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Park, J. Lee, I. Jo, S. Cho, S.K. Lee, S.B. Lee, H.J. Ryu, S.H. Hong, Surf. Coat. Tech. 307, 399 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Lee, S.S. Sohn, C. Jeon, I. Jo, S.-K. Lee, S. Lee, Mater. Sci. Eng. A 680, 368 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Lee, G.S. Kim, C. Jeon, S.S. Sohn, S.-B. Lee, S.-K. Lee, H.S. Kim, S. Lee, Met. Mater. Int. 22, 707 (2016)CrossRefGoogle Scholar
  15. 15.
    S.-B. Lee, S.-K. Lee, S. Lee, N.J. Kim, Metall. Mater. Trans. A 39A, 763 (2008)CrossRefGoogle Scholar
  16. 16.
    M.B. Karamis, F. Nair, A. Tasdemirci, Compos. Struct. 64, 219 (2004)CrossRefGoogle Scholar
  17. 17.
    M.B. Karamis, F. Nair, A.A. Cerit, J. Mater. Process. Technol. 209, 4880 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Ozden, R. Ekici, F. Nair, Compos. Part A 38, 484 (2007)CrossRefGoogle Scholar
  19. 19.
    E.D.H. Davies, S.C. Hunter, J. Mech. Phys. Solids 11, 155 (1963)CrossRefGoogle Scholar
  20. 20.
    J. Van Slycken, P. Verleysen, J. Degrieck, L. Samek, B.C. De Cooman, Metall. Mater. Trans. A 37, 1527 (2006)CrossRefGoogle Scholar
  21. 21.
    W. Chen, B. Song, Split Hopkinson (Kolsky) bar-design, testing and applications (Springer, New York, 2011)CrossRefGoogle Scholar
  22. 22.
    R. Gerlach, C. Kettenbeil, N. Petrinic, Int. J. Impact Eng. 50, 63 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Li, G. Subhash, X.-L. Gao, L.J. Kecskes, R.J. Dowding, Scr. Mater. 49, 1087 (2003)CrossRefGoogle Scholar
  24. 24.
    Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, H.F. Zhang, Mater. Sci. Eng. A 473, 105 (2008)CrossRefGoogle Scholar
  25. 25.
    G.M. Owolabi, A.G. Odeshi, M.N.K. Singh, M.N. Bassim, Mater. Sci. Eng. A 457, 114 (2007)CrossRefGoogle Scholar
  26. 26.
    G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer, J. Appl. Phys. 90, 136 (2001)CrossRefGoogle Scholar
  27. 27.
    P.N. Bindumadhavan, T.K. Chia, M. Chandrasekaran, H.K. Wah, L.N. Lam, O. Prabhakar, Mater. Sci. Eng. A 315, 217 (2001)CrossRefGoogle Scholar
  28. 28.
    K. Lee, S.-B. Lee, S.-K. Lee, S. Lee, Metall. Mater. Trans. A 39A, 1319 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Xue, H.E. Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Acta Mater. 55, 1975 (2007)CrossRefGoogle Scholar
  30. 30.
    A.M. Samuel, F.H. Samuel, H.W. Doty, J. Mater. Sci. 31, 5529 (1996)CrossRefGoogle Scholar
  31. 31.
    N. Ünlü, A. Genç, M.L. Öveçoǧlu, E.J. Lavernia, F.H. Froes, J. Alloy. Compd. 343, 223 (2002)CrossRefGoogle Scholar
  32. 32.
    J. Payne, G. Welsh, R.J. Christ Jr., J. Nardiello, J.M. Papazian, Int. J. Fatigue 32, 247 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Moćko, J.A. Rodríguez-Martínez, Z.L. Kowalewski, A. Rusinek, Strain 48, 498 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Jeon, M. Kang, C.P. Kim, H.S. Kim, S. Lee, Mater. Sci. Eng. A 579, 77 (2013)CrossRefGoogle Scholar
  35. 35.
    K. Lee, Y.N. Kwon, S. Lee, J. Alloy. Compd. 461, 532 (2008)CrossRefGoogle Scholar
  36. 36.
    D. Jeong, H. Sung, T. Park, J. Lee, S. Kim, Met. Mater. Int. 22, 601 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Sasso, G. Newaz, D. Amodio, Mater. Sci. Eng. A 487, 289 (2008)CrossRefGoogle Scholar
  38. 38.
    J.E. Hatch, Aluminum: properties and physical metallurgy (American Society for Metals, Metals Park, 1993)Google Scholar
  39. 39.
    Y. Yang, H.G. Zheng, Z.J. Shi, Q.M. Zhang, Mater. Sci. Eng. A 528, 2446 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Puga, V.H. Carneiro, J. Barbosa, D. Soares, Met. Mater. Int. 22, 863 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Hyungsoo Lee
    • 1
  • Jin Hyeok Choi
    • 1
  • Min Chul Jo
    • 1
  • Ilguk Jo
    • 2
  • Sang-Kwan Lee
    • 2
  • Sunghak Lee
    • 1
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.Composites Research Division, Functional Composites DepartmentKorea Institute of Materials ScienceChangwonKorea

Personalised recommendations