Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 845–859 | Cite as

Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

  • Myeong-Jin Lee
  • Young-Ju Jeon
  • Ga-Eun Son
  • Sihwa Sung
  • Ju-Young Kim
  • Heung Nam Han
  • Soo Gyeong Cho
  • Sang-Hyun Jung
  • Sukbin LeeEmail author
Article
  • 258 Downloads

Abstract

We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

Keywords

Polycrystal Grain boundary Microstructure-based FEM Mesh element quality 

Notes

Acknowledgements

This work was supported by the Agency for Defense Development (ADD) and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (No. NRF-2015R1A5A1037627).

References

  1. 1.
    B. Sun, Z. Suo, W. Yang, Acta Mater. 45, 1907–1915 (1997)CrossRefGoogle Scholar
  2. 2.
    B. Sun, Z. Suo, Acta Mater. 45, 4953–4962 (1997)CrossRefGoogle Scholar
  3. 3.
    A.F. Bower, E. Wininger, J. Mech. Phys. Solids 52, 1289–1317 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Nygards, P. Gudmundson, Comput. Mater. Sci. 24, 513–519 (2002)CrossRefGoogle Scholar
  5. 5.
    A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan, G. Cailletaud, Acta Mater. 55, 4121–4136 (2007)CrossRefGoogle Scholar
  6. 6.
    H.J. Chang, H.N. Han, S.J. Park, J.H. Cho, K.H. Oh, Met. Mater. Int. 16, 553–558 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Manchiraju, D. Gaydosh, O. Benafan, R. Noebe, R. Vaidyanathan, P.M. Anderson, Acta Mater. 59, 5238–5249 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Herring, in The Physics of Powder Metallurgy, ed. by W. Kingston (McGraw-Hill, New York, 1951), p. 143Google Scholar
  9. 9.
    R. Quey, P.R. Dawson, F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)CrossRefGoogle Scholar
  10. 10.
    F. Barbe, R. Quey, 18 ème Congrès Français de Mécanique (2007)Google Scholar
  11. 11.
    C. Konke, S. Eckardt, S. Hafner, T. Luther, J. Unger, Int. J. Multiscale Comput. Eng. 8, 17–36 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Bhandari, S. Sarkar, M. Groeber, M.D. Uchic, D.M. Dimiduk, S. Ghosh, Comput. Mater. Sci. 41, 222–235 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Ghosh, Y. BlIandari, M. Groeber, Comput.-Aided Des. 40, 293–310 (2008)CrossRefGoogle Scholar
  14. 14.
    A.C.O. Miranda, L.F. Martha, P.A. Wawrzynek, A.R. Ingraffea, Eng. Comput. 25, 207–219 (2009)CrossRefGoogle Scholar
  15. 15.
    S.E. Dillard, J.F. Bingert, D. Thoma, B. Hamann, I.E.E.E. Trans, Vis. Comput. Graph. 13, 1528–1535 (2007)CrossRefGoogle Scholar
  16. 16.
    K. Brakke, Exp. Math. 1, 141–165 (1992)CrossRefGoogle Scholar
  17. 17.
    A. Kuprat, A. Khamayseh, D. George, L. Larkey, J. Comput. Phys. 172, 99–118 (2001)CrossRefGoogle Scholar
  18. 18.
    R.H. Moore, G.S. Rohrer, S. Saigal, Eng. Comput. 25, 221–235 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Barbe, L. Decker, D. Jeulin, G. Cailletaud, Int. J. Plast 17, 513–536 (2001)CrossRefGoogle Scholar
  20. 20.
    M. Tanemura, Forma 18, 221–247 (2003)Google Scholar
  21. 21.
    T.-C. Chen, T. Li, X. Zhang, S.B. Desu, J. Mater. Res. 12, 1569–1575 (1997)CrossRefGoogle Scholar
  22. 22.
    S. Kumar, S.K. Kurtz, J.R. Banavar, M. Sharma, J. Stat. Phys. 67, 523–551 (1992)CrossRefGoogle Scholar
  23. 23.
    A. Ullah, G.Q. Liu, J.H. Luan, W.W. Li, M.U. Rahman, M. Ali, Mater. Charact. 91, 65–75 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Ullah, G.Q. Liu, H. Wang, M. Khan, D.F. Khan, J.H. Luan, Mater. Express 3, 109–118 (2013)CrossRefGoogle Scholar
  25. 25.
    J.C. Tucker, L.H. Chan, G.S. Rohrer, M.A. Groeber, A.D. Rollett, Scripta Mater. 66, 554–557 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Donegan, J. Tucker, A. Rollett, K. Barmak, M. Groeber, Acta Mater. 61, 5595–5604 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Groeber, B. Haley, M. Uchic, D. Dimiduk, S. Ghosh, Mater. Charact. 57, 259–273 (2006)CrossRefGoogle Scholar
  28. 28.
    D. Rowenhorst, A. Lewis, G. Spanos, Acta Mater. 58, 5511–5519 (2010)CrossRefGoogle Scholar
  29. 29.
    F. Wakai, N. Enomoto, H. Ogawa, Acta Mater. 48, 1297–1311 (2000)CrossRefGoogle Scholar
  30. 30.
    W.J. Schroeder, J.A. Zarge, W.E. Lorensen, in SIGGRAPH ‘Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques’ (ACM, New York, 1992), pp. 65–70Google Scholar
  31. 31.
    D.P. Luebke, I.E.E.E. Comput, Graph. Appl. 21, 24–35 (2001)CrossRefGoogle Scholar
  32. 32.
    S.B. Lee, G.S. Rohrer, A.D. Rollett, Model. Simul. Mater. Sci. Eng. 22, 21 (2014)CrossRefGoogle Scholar
  33. 33.
    Z. Wu, J.M. Sullivan, Int. J. Numer. Methods Eng. 58, 189–207 (2003)CrossRefGoogle Scholar
  34. 34.
    P.M. Knupp, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, SAND2007-8128C, AIAA (2007)Google Scholar
  35. 35.
    M. Bern, D. Eppstein, J. Gilbert, J. Comput. Syst. Sci. 48, 384–409 (1994)CrossRefGoogle Scholar
  36. 36.
    M. Goelke, Element quality and check (2014), http://www.altairuniversity.com. Accessed 25 July 2017
  37. 37.
    A. Hannukainen, S. Korotov, M. Křížek, Numer. Math. 120, 79–88 (2012)CrossRefGoogle Scholar
  38. 38.
    T.A. Burkhart, D.M. Andrews, C.E. Dunning, J. Biomech. 46, 1477–1488 (2013)CrossRefGoogle Scholar
  39. 39.
    J. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, University of California at Berkeley, p. 73 (2002)Google Scholar
  40. 40.
    R. Abgrall, J. Comput. Phys. 114, 45–58 (1994)CrossRefGoogle Scholar
  41. 41.
    Wanai Li, Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids (Springer, Berlin, 2014), pp. 1–10Google Scholar
  42. 42.
    H. Ledbetter, E. Naimon, J. Phys. Chem. Ref. Data 3, 897–935 (1974)CrossRefGoogle Scholar
  43. 43.
    C. Wert, E. Tyndall, J. Appl. Phys. 20, 587–589 (1949)CrossRefGoogle Scholar
  44. 44.
    C. Hull, International Critical Tables of Numerical Data, Physics, Chemistry and technoLogy (National Academies, Washington, DC, 1929)Google Scholar
  45. 45.
    A. Alankar, I.N. Mastorakos, D.P. Field, Acta Mater. 57, 5936–5946 (2009)CrossRefGoogle Scholar
  46. 46.
    D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 31, 1951–1976 (1983)CrossRefGoogle Scholar
  47. 47.
    Y. Choi, T. Parthasarathy, D. Dimiduk, M. Uchic, Metall. Mater. Trans. A 37, 545–550 (2006)CrossRefGoogle Scholar
  48. 48.
    Y. Choi, M. Uchic, T. Parthasarathy, D. Dimiduk, Scripta Mater. 57, 849–852 (2007)CrossRefGoogle Scholar
  49. 49.
    ASM International Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, USA, 2001)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Myeong-Jin Lee
    • 1
  • Young-Ju Jeon
    • 1
  • Ga-Eun Son
    • 1
  • Sihwa Sung
    • 1
  • Ju-Young Kim
    • 1
  • Heung Nam Han
    • 2
  • Soo Gyeong Cho
    • 3
  • Sang-Hyun Jung
    • 3
  • Sukbin Lee
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  2. 2.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.The 4th Research and Development InstituteAgency for Defense Development (ADD)DaejeonRepublic of Korea

Personalised recommendations