Metals and Materials International

, Volume 24, Issue 3, pp 616–625 | Cite as

Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

  • S. W. Kim
  • H. W. Lee


By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.


Maraging steel SEM Welding Reverted austenite 



This study was supported by Dong-A University.


  1. 1.
    P.W. Hochanadel, G.R. Edwards, C.V. Robino, M.J. Cieslak, Metall. Mater. Trans. A 25(4), 789–798 (1994)CrossRefGoogle Scholar
  2. 2.
    K. Stiller, F. Danoix, A. Bostel, Appl. Surf. Sci. 94(95), 326–333 (1996)CrossRefGoogle Scholar
  3. 3.
    K. Stiller, M. Hättestrand, F. Danoix, Acta Mater. 46, 6063–6073 (1998)CrossRefGoogle Scholar
  4. 4.
    Z. Guo, W. Sha, D. Vaumousse, Acta Mater. 51, 101–116 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Hättestrand, J.-O. Nilsson, K. Stiller, P. Liu, M. Andersson, Acta Mater. 52, 1023–1037 (2004)CrossRefGoogle Scholar
  6. 6.
    E.V. Pereloma, A. Shehter, M. Miller, S.P. Ringer, Acta Mater. 52, 5589–5602 (2004)CrossRefGoogle Scholar
  7. 7.
    U.K. Viswanathan, G.K. Dey, V. Sethumadhavan, Mater. Sci. Eng. A 398, 367–372 (2005)CrossRefGoogle Scholar
  8. 8.
    C.A. Pampillo, H.W. Paxton, Metall. Trans. A 31, 2895–2903 (1972)CrossRefGoogle Scholar
  9. 9.
    K.V. Rajkumar, S. Vaidyanathan, A. Kumar, T. Jayakumar, B. Raj, K.K. Ray, J. Magn. Magn. Mater. 312, 359–365 (2007)CrossRefGoogle Scholar
  10. 10.
    Nam-Hoe Heo, Hu-Chul Lee, The embrittlement and de-embrittlement of grain boundaries in an Fe-Mn-Ni alloy due to grain boundary segregation of Mn. MMTA 27, 1015–1020 (1996)CrossRefGoogle Scholar
  11. 11.
    D.R. Squires, E.A. Wilson, Aging and brittleness in an Fe-Ni-Mn alloy. Metall. Trans. 3, 575–581 (1972)CrossRefGoogle Scholar
  12. 12.
    S. Hossein Nedjad, PhD Thesis. University of Tehran (2005)Google Scholar
  13. 13.
    Nam-Hoe Heo, Hu-Chul Lee, Role of chromium on mechanical properties of Fe-Mn-Ni-Mo-Ti maraging steels. Met. Mater. 1, 77–83 (1995)Google Scholar
  14. 14.
    S. Hossein Nedjad, M.R. Movaghar Garabagh, M. Nili Ahmadabadi, H. Shirazi, Effect of further alloying on the microstructure and mechanical properties of an Fe–10Ni–5Mn maraging steels. Mater. Sci. Eng. A 473, 249–253 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Schober, R. Schnitzer, H. Leitner, Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel. Ultramicroscopy 109, 553–562 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Hossein Nedjad, S. Meimandi, A. Mahmoudi, T. Abedi, S. Yazdani, H. Shirazi, M. Nili Ahmadabadi, Effect of aging on the microstructure and tensile properties of Fe–Ni–Mn–Cr maraging alloys. Mater. Sci. Eng. A 501, 182–187 (2009)CrossRefGoogle Scholar
  17. 17.
    Z. Paley, The heat treatment of 18% Ni maraging steel. Weld. Res. Suppl. 48, 245s–252s (1969)Google Scholar
  18. 18.
    ASM International, ASM Handbook 4, 528–548 (1991)Google Scholar
  19. 19.
    F. H. Lang, N. Kenyon, Welding of maraging steels. Weld. Res. Counc. Bull. 159, 3–43 (1971)Google Scholar
  20. 20.
    C.R. Shamantha, R. Narayanan, K.J.L. Iyer, V.M. Radhakrishnan, S.K. Seshadri, S. Sundararajan, Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel. Mater. Sci. Eng. A 287, 43–51 (2000)CrossRefGoogle Scholar
  21. 21.
    A. Mahmoudi, M.R. Zamanzad Ghavidel, S. Hossein Nedjad, A. Heidarzadeh, M. Nili Ahmadabadi, Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles. Mater. Charact. 62, 976–981 (2011)CrossRefGoogle Scholar
  22. 22.
    N. Kenyon, Effect of austenite on the toughness of maraging steel welds. Weld. J 47, 193–198 (1968)Google Scholar
  23. 23.
    T. Boniszewski, D.M. Kenyon, Examination of electron beam welds in 18% Ni/Co/Mo maraging steel sheet. Br. Weld. J. 13, 415–435 (1996)Google Scholar
  24. 24.
    J.A. Kies, H.L. Smith, H.E. Romine, Fracture toughness and critical defect sizes with welds of 18% nickel maraging steels. Metals Eng. Q. 6, 37–47 (1996)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.R&D Center EngineerShinHung Power Actuated CylinderBusanRepublic of Korea
  2. 2.Department of Materials Science and EngineeringDong-A UniversityBusanRepublic of Korea

Personalised recommendations