Metals and Materials International

, Volume 24, Issue 3, pp 537–548 | Cite as

Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al–Zn–Mg–Cu Alloy

  • Kai Wen
  • Baiqing Xiong
  • Yongan Zhang
  • Zhihui Li
  • Xiwu Li
  • Shuhui Huang
  • Lizhen Yan
  • Hongwei Yan
  • Hongwei Liu


In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al–Zn–Mg–Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along 〈110〉Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η′ precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.


Al–Zn–Mg–Cu alloy Retrogression and re-aging treatment Precipitate Mechanical properties 



This study was financially supported by the National Key R&D Program of China (Nos. 2016YFB0300803, 2016YFB0300903).


  1. 1.
    P.A. Rometsch, Y. Zhang, S. Knight, T. Nonferr, Metal Soc. 24, 2003 (2014)Google Scholar
  2. 2.
    T. Dursun, C. Soutis, Mater. Des. 56, 862 (2014)CrossRefGoogle Scholar
  3. 3.
    A.C.U. Rao, V. Vasu, M. Govindaraju, K.V.S. Srinadh, Trans. Nonferrous Metal Soc. 26, 1447 (2016)CrossRefGoogle Scholar
  4. 4.
    D. Mcnaughtan, M. Worsfold, M.J. Robinson, Corrros. Sci. 45, 2377 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, Y.B. He, Mater. Des. 32, 2149 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58, 4814 (2010)CrossRefGoogle Scholar
  7. 7.
    A.F. Oliveira, M.C.D. Barros, K.R. Cardoso, D.N. Travessa, Mater. Sci. Eng. A 379, 321 (2004)CrossRefGoogle Scholar
  8. 8.
    J.C. Lin, H.L. Liao, W.D. Jehng, C.H. Chang, S.L. Lee, Corrros. Sci. 48, 3139 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Talianker, B. Cina, Metall. Mater. Trans. A 20, 2087 (1989)CrossRefGoogle Scholar
  10. 10.
    R.J. Bucci, C.J. Warren, E.A.S. Jr, J. Aircraft 37, 122 (2000)CrossRefGoogle Scholar
  11. 11.
    J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, Z.Q. Zheng, Mater. Charact. 60, 1334 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.L. Wang, Q.L. Pan, L.L. Wei, B. Li, Y. Wang, Mater. Des. 55, 857 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Li, X. Zhang, P. Li, J. You, T. Nonferr, Metal Soc. 20, 935 (2010)Google Scholar
  14. 14.
    D.K. Xu, N. Birbilis, P.A. Rometsch, Corrros. Sci. 54, 17 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Feng, X.M. Zhang, S.D. Liu, Y.L. Deng, Mater. Des. 60, 208 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Li, Z. Peng, C. Li, Z. Jia, W. Chen, Z. Zheng, Trans. Nonferrous Metal Soc. 18, 755 (2008)CrossRefGoogle Scholar
  17. 17.
    D. Feng, X.M. Zhang, S.D. Liu, T. Wang, Z.Z. Wu, Y.W. Guo, Mater. Sci. Eng. A 588, 34 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Ning, Z. Liu, B. Peng, S. Zeng, T. Nonferr, Metal Soc. 17, 1005 (2007)Google Scholar
  19. 19.
    N.C. Danh, K. Rajan, W. Wallace, Metall. Trans. A 14, 1843 (1983)CrossRefGoogle Scholar
  20. 20.
    M. Kanno, I. Araki, Q. Cui, Mater. Sci. Technol. 10, 599 (1994)CrossRefGoogle Scholar
  21. 21.
    F. Viana, A.M.P. Pinto, H.M.C. Santos, A.B. Lopes, J. Mater. Process. Technol. 92, 54 (1999)CrossRefGoogle Scholar
  22. 22.
    X.J. Jiang, B. Noble, B. Holme, G. Waterloo, J. Tafto, Metall. Mater. Trans. A 31, 339 (2000)CrossRefGoogle Scholar
  23. 23.
    J.K. Park, A.J. Ardell, Metall. Trans. A 15, 1531 (1984)CrossRefGoogle Scholar
  24. 24.
    D.B. Williams, C.B. Carter, The Transmission Electron Microscope (Springer, New York, 1996), p. 231CrossRefGoogle Scholar
  25. 25.
    K. Wen, Y. Fan, G. Wang, L. Jin, X. Li, Z. Li, Y. Zhang, B. Xiong, Mater. Des. 101, 16 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Liu, B. Xiong, F. Bian, Z. Li, X. Li, Y. Zhang, F. Wang, H. Liu, Mater. Sci. Eng. A 588, 1 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Sha, A. Cerezo, Acta Mater. 52, 4503 (2004)CrossRefGoogle Scholar
  28. 28.
    X.Z. Li, V. Hansen, J. Gjønnes, L.R. Wallenberg, Acta Mater. 47, 2651 (1999)CrossRefGoogle Scholar
  29. 29.
    D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, 2009), p. 148Google Scholar
  30. 30.
    J.W. Martin, Precipitation Hardening (Butterworth-Heinemann Press, Oxford, 1998), p. 187Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Non-ferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations