Advertisement

Metals and Materials International

, Volume 24, Issue 3, pp 481–488 | Cite as

On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses

  • A. I. Bazlov
  • A. Yu. Churyumov
  • M. Buchet
  • D. V. Louzguine-Luzgin
Article
  • 410 Downloads

Abstract

Room temperature deformation process in a bulk metallic glassy sample was studied by using a hydraulic thermomechanical simulator. The temperature rise during each separate shear band propagation event was measured with a high data acquisition frequency by a thermocouple welded to the sample. Calculation showed that when propagation of the well developed shear bands takes place along the entire sample the temperature inside the shear band should be close to the glass-transition temperature. It was also possible to resolve the temporal stress distribution and a double-stage character of stress drops was also observed. The obtained results are compared with the literature data obtained by infrared camera measurements and the results of finite elements modeling.

Keywords

Metallic glasses Deformation Shear bands Computer simulations Temperature rise 

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (№K2-2014-013 and №К2-2016-071) and by World Premier International Research Center Initiative (WPI), MEXT, Japan.

References

  1. 1.
    A. Inoue, Mater. Trans. JIM 36, 866 (1995)CrossRefGoogle Scholar
  2. 2.
    W.L. Johnson, MRS Bull. 24, 42 (1999)CrossRefGoogle Scholar
  3. 3.
    T.G. Nieh, C. Schuh, J. Wadsworth, Y. Li, Intermetallics 10, 1177 (2002)CrossRefGoogle Scholar
  4. 4.
    D.V. Louzguine-Luzgin, A. Inoue, Bulk metallic glasses. formation, structure, properties, and applications, in Handbook of Magnetic Materials, vol. 21, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2013), p. 131Google Scholar
  5. 5.
    M.F. Ashby, A.L. Greer, Scr. Mater. 54, 321 (2006)CrossRefGoogle Scholar
  6. 6.
    D.V. Louzguine-Luzgin, N. Chen, A.Y. Churymov, L.V. Louzguina-Luzgina, V.I. Polkin, L. Battezzati, A.R. Yavari, J. Mater. Sci. 50, 1783 (2015)CrossRefGoogle Scholar
  7. 7.
    D.V. Louzguine-Luzgin, D.B. Miracle, L. Louzguina-Luzgina, A. Inoue, J. Appl. Phys. 108, 103511 (2010)CrossRefGoogle Scholar
  8. 8.
    W.J. Botta, F.S. Pereira, C. Bolfarini, C.S. Kiminami, M.F. de Oliveira, Philos. Mag. Lett. 88, 785 (2008)CrossRefGoogle Scholar
  9. 9.
    R.D. Conner, Y. Li, W.D. Nix, W.L. Johnson, Acta Mater. 52, 2429 (2004)CrossRefGoogle Scholar
  10. 10.
    A.R. Yavari, J.J. Lewandowski, J. Eckert, MRS Bull. 32, 635 (2007)CrossRefGoogle Scholar
  11. 11.
    P.E. Donovan, W.M. Stobbs, Acta Metall. 29, 1419 (1981)CrossRefGoogle Scholar
  12. 12.
    G. He, J. Eckert, W. Loser, Acta Mater. 51, 1621 (2003)CrossRefGoogle Scholar
  13. 13.
    J.Y. Lee, K.H. Han, J.M. Park, K. Chattopadhyay, W.T. Kim, D.H. Kim, Acta Mater. 54, 5271 (2006)CrossRefGoogle Scholar
  14. 14.
    S.X. Song, X.-L. Wang, T.G. Nieh, Scr. Mater. 62, 847 (2010)CrossRefGoogle Scholar
  15. 15.
    W.J. Wright, R.R. Byer, X. Gu, Appl. Phys. Lett. 102, 241920 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Tayebi, ChE Lekka, G.A. Evangelakis, J. Alloys Compd. 483, 570 (2009)CrossRefGoogle Scholar
  17. 17.
    A.J. Cao, Y.Q. Cheng, E. Ma, Acta Mater. 57, 5146 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Vinogradov, A. Lazarev, D.V. Louzguine-Luzgin, Y. Yokoyama, S. Li, A.R. Yavari, A. Inoue, Acta Mater. 58, 6736 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Hufnagel, C. Jiao, T. Li, Y. Xing, L.Q. Ramesh, J. Mater. Res. 17, 1441 (2002)CrossRefGoogle Scholar
  20. 20.
    S. González, G.Q. Xie, D.V. Louzguine-Luzgin, J.H. Perepezko, A. Inoue, Mater. Sci. Eng. A 528, 3506 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, C.T. Liu, J. Mater. Sci. 47, 55 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Mondal, K. Hono, Mater. Trans. JIM 50, 152 (2009)CrossRefGoogle Scholar
  23. 23.
    Y.Q. Cheng, Z. Han, Y. Li, E. Ma, Phys. Rev. B Condens. Matter 80, 134115 (2009)CrossRefGoogle Scholar
  24. 24.
    J.J. Lewandowski, A.L. Greer, Nat. Mater. 5, 15 (2006)CrossRefGoogle Scholar
  25. 25.
    K.M. Flores, R.H. Dauskardt, J. Mater. Res. 14, 638 (1999)CrossRefGoogle Scholar
  26. 26.
    M. Zhao, M. Li, Scr. Mater. 65, 493 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Thurnheer, F. Haag, J.F. Löffler, Acta Mater. 115, 468 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Tönnies, K. Samwer, P.M. Derlet, C.A. Volkert, R. Maaß, Appl. Phys. Lett. 106, 171907 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Maaß, D. Klaumünzer, J.F. Löffler, Acta Mater. 59, 3205 (2011)CrossRefGoogle Scholar
  30. 30.
    A.L. Greer, Y.Q. Cheng, E. Ma, MSER 74, 71 (2013)CrossRefGoogle Scholar
  31. 31.
    R.T. Qu, Z.Q. Liu, G. Wang, Z.F. Zhan, Acta Mater. 91, 19 (2015)CrossRefGoogle Scholar
  32. 32.
    F.H.D. Torre, D. Klaumünzer, R. Maaß, J.F. Löffler, Acta Mater. 58, 3742 (2010)CrossRefGoogle Scholar
  33. 33.
    D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, A.Y. Churyumov, Metals 3, 1 (2013)CrossRefGoogle Scholar
  34. 34.
    G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O.G. Rybchenko, E.V. Tatiyanin, I.I. Zverkova, JMNM 24, 69 (2005)CrossRefGoogle Scholar
  35. 35.
    F.F. Wu, Z.F. Zhang, S.X. Mao, Acta Mater. 57, 257 (2009)CrossRefGoogle Scholar
  36. 36.
    N. Chen, D.V. Louzguine-Luzgin, G.Q. Xie, T. Wada, A. Inoue, Acta Mater. 57, 2775 (2009)CrossRefGoogle Scholar
  37. 37.
    D.H. Pi, J.K. Lee, M.H. Lee, S. Yi, J. Eckert, K.B. Kim, J. Alloys Compd. 486, 233 (2009)CrossRefGoogle Scholar
  38. 38.
    Q.S. Zhang, W. Zhang, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, Acta Mater. 58, 904 (2010)CrossRefGoogle Scholar
  39. 39.
    D.V. Louzguine-Luzgin, S.V. Ketov, Z. Wang, M.J. Miyama, A.A. Tsarkov, A.Y. Churyumov, Mater. Sci. Eng. A 616, 288 (2014)CrossRefGoogle Scholar
  40. 40.
    B. Yang, C.T. Liu, T.G. Nieh, M.L. Morrison, P.K. Liaw, R.A. Buchanan, J. Mater. Res. 21, 915 (2006)CrossRefGoogle Scholar
  41. 41.
    Robert Maaß, Jörg F. Löffler, Adv. Funct. Mater. 25, 2353 (2015)CrossRefGoogle Scholar
  42. 42.
    D.V. Louzguine-Luzgin, G. Xie, Q. Zhang, A. Inoue, Philos. Mag. 90, 1955 (2010)CrossRefGoogle Scholar
  43. 43.
    D.V. Louzguine-Luzgin, VYu. Zadorozhnyy, N. Chen, S.V. Ketov, J. Non Cryst. Solids 396–397, 20 (2014)CrossRefGoogle Scholar
  44. 44.
    D.V. Louzguine-Luzgin, D.M. Packwood, G. Xie, A.Y. Churyumov, J. Alloys Compd. 561, 241 (2013)CrossRefGoogle Scholar
  45. 45.
    D. Klaumünzer, R. Maaß, J.F. Löffler, J. Mater. Res. 26, 1453 (2011)CrossRefGoogle Scholar
  46. 46.
    S.V. Ketov, D.V. Louzguine-Luzgin, Sci. Rep. 3, 2798 (2013)CrossRefGoogle Scholar
  47. 47.
    W.J. Wright, R.B. Schwarz, W.D. Nix, Mater. Sci. Eng. A 319–321, 229 (2001)CrossRefGoogle Scholar
  48. 48.
    P.J. Rousseeuw, J. Comput. Appl. Math. 20, 53 (1987)CrossRefGoogle Scholar
  49. 49.
    P. Guan, M. Chen, T. Egami, Phys. Rev. Lett. 104, 205701 (2010)CrossRefGoogle Scholar
  50. 50.
    D.V. Louzguine-Luzgin, T. Wada, H. Kato, J. Perepezko, A. Inoue, Intermetallics 18, 1235 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • A. I. Bazlov
    • 1
  • A. Yu. Churyumov
    • 1
  • M. Buchet
    • 2
  • D. V. Louzguine-Luzgin
    • 2
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.WPI Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations