Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder



Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y–Ti–O, Y–Ti–Si–O, Y–Si–O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y–Ti–O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.


Oxide dispersion strengthened steel Water atomized powder Silicon Nanoparticles Aggregated 



This research was supported by Civil-Military Technology Cooperation Program (17-CM-MA-06).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, K. Asabe, J. Nucl. Mater. 204, 74 (1993)CrossRefGoogle Scholar
  2. 2.
    A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Nat. Mater. 10, 922 (2011)CrossRefGoogle Scholar
  3. 3.
    M.J. Alinger, G.R. Odette, D.T. Hoelzer, Acta Mater. 57, 392 (2009)CrossRefGoogle Scholar
  4. 4.
    S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009)CrossRefGoogle Scholar
  5. 5.
    G.R. Odette, D.T. Hoelzer, JOM 62, 84 (2010)CrossRefGoogle Scholar
  6. 6.
    B.M. Arkhurst, J. Park, C. Lee, J.H. Kim, Korean J. Metals Mater. 55, 550 (2017)Google Scholar
  7. 7.
    K. Euh, B. Arkhurst, I.H. Kim, H.-G. Kim, J.H. Kim, Metals Mater. Int. 23, 1 (2017)CrossRefGoogle Scholar
  8. 8.
    J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, T. Shanmugasundaram, Acta Mater. 59, 1300 (2011)CrossRefGoogle Scholar
  9. 9.
    P. Hosemann, E. Stergar, C. Vieh, R.R. Greco, M.J. Cappiello, S.A. Maloy, Trans. Am. Nucl. Soc. 98, 1123–1124 (2008)Google Scholar
  10. 10.
    R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, J. Nucl. Mater. 341, 103 (2005)CrossRefGoogle Scholar
  11. 11.
    C.C. Eiselt, M. Klimenkov, R. Lindau, A. Möslang, H.R.Z. Sandim, A.F. Padilha, D. Raabe, J. Nucl. Mater. 385, 231 (2009)CrossRefGoogle Scholar
  12. 12.
    P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Acta Mater. 59, 992 (2011)CrossRefGoogle Scholar
  13. 13.
    G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008)CrossRefGoogle Scholar
  14. 14.
    S.K. Karak, T. Chudoba, Z. Witczak, W. Lojkowski, I. Manna, Mater. Sci. Eng. A 528, 7475 (2011)CrossRefGoogle Scholar
  15. 15.
    S.K. Karak, J. Dutta Majumdar, Z. Witczak, W. Lojkowski, I. Manna, Mater. Sci. Eng. A 580, 231 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Zeybek, S.P. Barroso, K.B. Chong, L. Edwards, M.E. Fitzpatrick, J. Mater. Eng. Perform. 23, 2120 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Nagini, R. Vijay, M. Ramakrishna, A.V. Reddy, G. Sundararajan, Mater. Sci. Eng. A 620, 490 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. Kaito, T. Narita, J. Nucl. Mater. 367–370A, 160 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Ratti, D. Leuvrey, M.H. Mathon, Y. de Carlan, J. Nucl. Mater. 386–388, 540 (2009)CrossRefGoogle Scholar
  20. 20.
    M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, J. Nucl. Mater. 329–333, 338 (2004)CrossRefGoogle Scholar
  21. 21.
    D.J. Larson, P.J. Maziasz, I.S. Kim, K. Miyahara, Scr. Mater. 44, 359 (2001)CrossRefGoogle Scholar
  22. 22.
    C.A. Williams, G.D.W. Smith, E.A. Marquis, Scr. Mater. 67, 108 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Ribis, Y. De Carlan, Acta Mater. 60, 238 (2012)CrossRefGoogle Scholar
  24. 24.
    M.J. Alinger, G.R. Odette, D.T. Hoelzer, J. Nucl. Mater. 329–333, 382 (2004)CrossRefGoogle Scholar
  25. 25.
    P. Miao, G.R. Odette, T. Yamamoto, M. Alinger, D. Klingensmith, J. Nucl. Mater. 377, 59 (2008)CrossRefGoogle Scholar
  26. 26.
    T.S. Byun, J.H. Kim, J.H. Yoon, D.T. Hoelzer, J. Nucl. Mater. 407, 78 (2010)CrossRefGoogle Scholar
  27. 27.
    H.J. Chang, H.Y. Cho, J.H. Kim, J. Alloys Compd. 653, 528 (2015)CrossRefGoogle Scholar
  28. 28.
    N.J. Cunningham, Y. Wu, A. Etienne, E.M. Haney, G.R. Odette, E. Stergar, D.T. Hoelzer, Y.D. Kim, B.D. Wirth, S.A. Maloy, J. Nucl. Mater. 444, 35 (2014)CrossRefGoogle Scholar
  29. 29.
    D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, T.S. Byun, J. Nucl. Mater. 471, 251 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Hirata, T. Fujita, C.T. Liu, M.W. Chen, Acta Mater. 60, 5686 (2012)CrossRefGoogle Scholar
  31. 31.
    J.H. Kim, J.-B. Seol, K.M. Kim, Korean J. Metals Mater. 54, 171 (2016)CrossRefGoogle Scholar
  32. 32.
    J.H. Kim, T.S. Byun, E. Shin, J.B. Seol, S. Young, N.S. Reddy, J. Alloys Compd. 651, 363 (2015)CrossRefGoogle Scholar
  33. 33.
    J.-H. Gwon, J.-H. Kim, K.-A. Lee, Mater. Sci. Eng. A 676, 209 (2016)CrossRefGoogle Scholar
  34. 34.
    J.H. Kim, J.H. Lee, J.Y. Min, S.W. Kim, C.H. Park, J.T. Yeom, T.S. Byun, J. Alloys Compd. 580, 125 (2013)CrossRefGoogle Scholar
  35. 35.
    J.H. Kim, T.S. Byun, J.H. Lee, J.Y. Min, S.W. Kim, C.H. Park, B.H. Lee, J. Nucl. Mater. 449, 300 (2014)CrossRefGoogle Scholar
  36. 36.
    K.D. Zilnyk, H.R.Z. Sandim, R.E. Bolmaro, R. Lindau, A. Möslang, A. Kostka, D. Raabe, J. Nucl. Mater. 448, 33 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima, J. Nucl. Sci. Technol. 39, 872 (2002)CrossRefGoogle Scholar
  38. 38.
    I.-S. Kim, J. Hunn, N. Hashimoto, D. Larson, P. Maziasz, K. Miyahara, E. Lee, J. Nucl. Mater. 280, 264 (2000)CrossRefGoogle Scholar
  39. 39.
    T. Okuda, M. Fujiwara, J. Mater. Sci. Lett. 14, 1600 (1995)CrossRefGoogle Scholar
  40. 40.
    M. Klimiankou, R. Lindau, A. Möslang, J. Nucl. Mater. 329–333, 347 (2004)CrossRefGoogle Scholar
  41. 41.
    M. Klimiankou, R. Lindau, A. Möslang, Micron 36, 1 (2005)CrossRefGoogle Scholar
  42. 42.
    C. Schade, J. Schaberl, Mater. Sci. Forum 534–536, 33 (2007)CrossRefGoogle Scholar
  43. 43.
    A. Dronhofer, J. Pesicka, G. Eggeler, J. Phys. IV France II Pr8, 235 (2001)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringHanbat National UniversityDaejeonRepublic of Korea

Personalised recommendations