Effects of Pre-ageing on Microstructure and Mechanical Properties of T9I6 Treated 2519A Aluminium Alloy

  • Lingying Ye
  • Yu Dong
  • Shengdan Liu
  • Haichun Jiang
  • Daxiang Sun
  • Xinming Zhang


The effects of pre-ageing on the microstructure and mechanical properties of T9I6 treated 2519A aluminium alloy were investigated by hardness testing, tensile testing, transmission electron microscope, high resolution transmission electron microscope and differential scanning calorimetry. With the increase of pre-ageing time from 40 min to 4 h, the strength tends to increase first and then decrease; the pre-ageing time of 80 min results in the highest 0.2% proof strength and ultimate tensile strength of 491.9 and 513.8 MPa, respectively, and a high elongation of 14.6%. Pre-ageing is favorable for the formation of a number of primary GP zones, which can greatly improve the distribution of dislocations introduced by subsequent pre-deformation and secondary GP zones introduced by subsequent interrupted ageing. As a result, the number of precursors for θ′ hardening precipitates is maximized and the mechanical properties is improved after final re-ageing.


2519A aluminium alloy Pre-ageing Mechanical properties Microstructure 



This study is supported by the National Key Research and Development Program of China (No. 2016YFB0300901), the Shenghua Yuying Project of Central South University (20130603) and China Scholarship Council Program (201706375013).


  1. 1.
    Z.G. Gao, X.M. Zhang, M.A. Chen, Scrip. Mater. 59, 983 (2008)CrossRefGoogle Scholar
  2. 2.
    Z.G. Gao, X.M. Zhang, M.A. Chen, J. Alloy. Compd. 476, L1 (2009)CrossRefGoogle Scholar
  3. 3.
    X.M. Zhang, H.J. Li, H.Z. Li, H. Gao, Z.G. Gao, Y. Liu, B. Liu, Trans. Nonferrous Met. Soc. China 18, 1 (2008)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, L. Liu, Y.Z. Jia, Chin. J. Nonferrous Met. 20, 1088 (2010)Google Scholar
  5. 5.
    H.Z. Li, X.P. Liang, M.A. Chen, X.M. Zhang, Trans. Mater. Heat Treat. 29, 86 (2008)Google Scholar
  6. 6.
    Y.L. Zheng, B. Ji, L.Y. Ye, J. Cent, South Univ. Technol. (Nat. Sci.) 44, 4806 (2013)Google Scholar
  7. 7.
    W.T. Wang, X.M. Zhang, Z.G. Gao, J. Alloy Compd. 491, 366 (2010)CrossRefGoogle Scholar
  8. 8.
    G. Gu, L.Y. Ye, H.C. Jiang, D.X. Sun, P. Zhang, X.M. Zhang, Trans. Nonferrous Met. Soc. China 24, 2295 (2014)CrossRefGoogle Scholar
  9. 9.
    L.Y. Ye, G. Gu, X.M. Zhang, Mater. Sci. Eng. A 590, 97 (2014)CrossRefGoogle Scholar
  10. 10.
    R.N. Lumley, I.J. Polmear, A.J. Mprton, Mater. Sci. Technol. 19, 1483 (2003)CrossRefGoogle Scholar
  11. 11.
    R.N. Lumley, I.J. Polmear, A.J. Mprton, Temper developments using interrupted ageing. in Proceedings of the 9th International Conference on Aluminium Alloys, (Institute of Materials Engineering Australasia Ltd, Brisbane 2004), pp. 85–95Google Scholar
  12. 12.
    R.N. Lumley, I.J. Polmear, A.J. Mprton, Mater. Sci. Technol. 21, 1025 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Takeda, Y. Maeda, A. Yoshida, Scrip Mater. 41, 643 (1999)CrossRefGoogle Scholar
  14. 14.
    Y.P. Wu, L.Y. Ye, Y. Jia, Trans. Nonferrous Met. Soc. China 24, 3076 (2014)CrossRefGoogle Scholar
  15. 15.
    M.J. Starink, Int. Mater. Rev. 49, 191 (2004)CrossRefGoogle Scholar
  16. 16.
    N. Gao, M.J. Starink, N. Kamp, J. Mater. Sci. 42, 4398 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Zlateva, Z. Martinova, Microstructure of Metals and Alloys—An Atlas of Transmission Electron Microscopy Images (CRC Press, NewYork, 2008), pp. 93–96CrossRefGoogle Scholar
  18. 18.
    S.K. Son, M. Takeda, M. Mitome, Mater. Lett. 59, 629 (2005)CrossRefGoogle Scholar
  19. 19.
    V. Vaithyanathan, C. Wolverton, L.Q. Chen, Acta Mater. 52, 2973 (2004)CrossRefGoogle Scholar
  20. 20.
    S.R. Li, S.C. Zhou, Heat Treatment of Metals (Central South University Press, Changsha, 2005), pp. 198–202Google Scholar
  21. 21.
    J. Da costa teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, A.J. Hill, C.R. Hutchinson, Acta Mater. 56, 6109 (2008)CrossRefGoogle Scholar
  22. 22.
    L.M. Brown, R.K. Ham, Strengthening Methods in Crystals (Applied Science Publishers, London, 1971), pp. 32–39Google Scholar
  23. 23.
    A.J. Ardell, Metall. Trans. A 16, 2131 (1985)CrossRefGoogle Scholar
  24. 24.
    J.M. Fragomeni, B.M. Hillberry, Acta Mech. 138, 185 (1999)CrossRefGoogle Scholar
  25. 25.
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, Boca Raton, 2009), pp. 120–135Google Scholar
  26. 26.
    Y. Chen, M. Weyland, C.R. Hutchinson, Acta Mater. 61, 5877 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Estrin, Dislocation Density-related Constitutive Modeling, Unified Constitutive Law of Plastic Deformation (Academic Press, SanDiego, 1996), pp. 69–106CrossRefGoogle Scholar
  28. 28.
    R. Øyvind, H.I. Laukli, B. Holmedal, Metall. Mater. Trans. A 37, 2007 (2006)CrossRefGoogle Scholar
  29. 29.
    J. Buda, R.N. Lumley, A.G. Croskey, K. Hono, Acta Mater. 55, 3015 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Lingying Ye
    • 1
    • 2
  • Yu Dong
    • 1
    • 2
  • Shengdan Liu
    • 1
    • 2
  • Haichun Jiang
    • 1
    • 2
    • 3
  • Daxiang Sun
    • 1
    • 2
  • Xinming Zhang
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Collaborative Innovation Center of Advanced Nonferrous Structural Materials and ManufacturingCentral South UniversityChangshaChina
  3. 3.Institut für Metallkunde und MetallphysikRWTH Aachen UniversitätAachenGermany

Personalised recommendations