Advertisement

Metals and Materials International

, Volume 24, Issue 3, pp 532–536 | Cite as

Effects of Molybdenum Addition on Hydrogen Desorption of TiC Precipitation-Hardened Steel

  • Eun Ju Song
  • Seung-Wook Baek
  • Seung Hoon Nahm
  • Dong-Woo Suh
Article

Abstract

The hydrogen-trap states in TiC and MoC that have coherent interfaces with ferrite were investigated using first-principles calculation. The trapping sites of TiC were the interfaces and interstitial sites of ferrite. On the other hand, the trapping sites of MoC were ferrite interstitial sites; the interface had a negative binding energy with H. Thermal desorption analysis confirms that the amounts of diffusible hydrogen were significantly reduced by addition of Mo in Ti-bearing steel.

Keywords

High-strength low-alloy (HSLA) steels Hydrogen embrittlement First-principles calculation Carbon vacancy Hydrogen trapping 

Notes

Acknowledgements

This work was supported by the National Research Council of Science & Technology (NST) through Creative Agenda Project (CAP-11-5-KRISS).

References

  1. 1.
    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44, 1945–1951 (2004)CrossRefGoogle Scholar
  2. 2.
    J.H. Jang, C.H. Lee, Y.-U. Heo, D.-W. Suh, Acta Mater. 60, 208–217 (2012)CrossRefGoogle Scholar
  3. 3.
    M.R. Louthan, G.R. Caskey, Int. J. Hydrog. Energy 1, 291–305 (1976)CrossRefGoogle Scholar
  4. 4.
    J. Capelle, J. Gilgert, I. Dmytrakh, G. Pluvinage, Int. J. Hydrog. Energy 33, 7630–7641 (2008)CrossRefGoogle Scholar
  5. 5.
    J. Hirth, Metall. Trans. A 11, 861–890 (1980)CrossRefGoogle Scholar
  6. 6.
    T. Michler, Y. Lee, R.P. Gangloff, J. Naumann, Int. J. Hydrog. Energy 34, 3201–3209 (2009)CrossRefGoogle Scholar
  7. 7.
    E.J. Song, S.-W. Baek, S.H. Nahm, U.B. Baek, Int. J. Hydrog. Energy 42, 8075–8082 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, D. Raabe, Int. J. Hydrog. Energy 39, 4634–4646 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. Sun, G. Benoit, C. Moriconi, F. Hamon, D. Halm, G. Hénaff, Int. J. Hydrog. Energy 36, 8641–8644 (2011)CrossRefGoogle Scholar
  10. 10.
    H.K.D.H. Bhadeshia, ISIJ Int. 56, 24–36 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Yan, Y. Yan, Y. He, J. Li, Y. Su, L. Qiao, Int. J. Hydrog. Energy 40, 2404–2414 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, C. Elsässer, Phys. Rev. B Condens. Matter Mater. Phys. 93, 1–14 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Pressouyre, I. Bernstein, Metall. Trans. A 9, 1571–1580 (1978)CrossRefGoogle Scholar
  14. 14.
    G. Pressouyre, I. Bernstein, Metall. Trans. A 12, 835–844 (1981)CrossRefGoogle Scholar
  15. 15.
    H. Lee, J. Lee, Acta Metall. 32, 131–136 (1984)CrossRefGoogle Scholar
  16. 16.
    A. Turnbull, R. Hutchings, D. Ferriss, Mater. Sci. Eng., A 238, 317–328 (1997)CrossRefGoogle Scholar
  17. 17.
    F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A 35, 3155–3163 (2004)CrossRefGoogle Scholar
  18. 18.
    F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A 37, 331–353 (2006)CrossRefGoogle Scholar
  19. 19.
    M.F. Stevens, I.M. Bernstein, Metall. Trans. A 20, 909–919 (1989)CrossRefGoogle Scholar
  20. 20.
    T. Depover, K. Verbeken, Corros. Sci. 112, 308–326 (2016)CrossRefGoogle Scholar
  21. 21.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  22. 22.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  23. 23.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  24. 24.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)CrossRefGoogle Scholar
  25. 25.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  27. 27.
    C.K. Ande, M.H.F. Sluiter, Acta Mater. 58, 6276–6281 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Charleux, W.J. Poole, M. Militzer, A. Deschamps, Metall. Mater. Trans. A 32, 1635–1647 (2001)CrossRefGoogle Scholar
  29. 29.
    E.J. Song, H. Bhadeshia, D.-W. Suh, Corros. Sci. 77, 379–384 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Teresiak, H. Kubsch, Nanostruct. Mater. 6, 671–674 (1995)CrossRefGoogle Scholar
  32. 32.
    R.H. Willens, E. Buehler, B.T. Matthias, Phys. Rev. 159, 327–330 (1967)CrossRefGoogle Scholar
  33. 33.
    J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scr. Mater. 63, 261–264 (2010)CrossRefGoogle Scholar
  34. 34.
    K.-T. Kim, S.-I. Pyun, E.M. Riecke, J. Mater. Sci. Lett. 4, 624–626 (1985)CrossRefGoogle Scholar
  35. 35.
    E.J. Song, D.-W. Suh, H.K.D.H. Bhadeshia, Comput. Mater. Sci. 79, 36–44 (2013)CrossRefGoogle Scholar
  36. 36.
    W. Johnson, Proc. R. Soc. Lond. 23, 168–179 (1875)CrossRefGoogle Scholar
  37. 37.
    K. Takai, R. Watanuki, ISIJ Int. 43, 520–526 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Korea Research Institute of Standards and ScienceCenter for Energy Materials MetrologyDaejeonRepublic of Korea
  2. 2.Now at Sandia National Laboratories, Hydrogen and Materials ScienceLivermoreUSA
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations