Skip to main content
Log in

Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper presents the results of experimental studies on the treatment of Fe–23Cr–11Mn–1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe–23Cr–11Mn–1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe–23Cr–11Mn–1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe–23Cr–11Mn–1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.V. Kostina, V.N. Skorobogatykh, T.V. Tykochinskaya, M.S. Nakhabina, V.V. Nemov, I.O. Bannykh, A.E. Korneev, Russ. Metall. 11, 1032 (2010)

    Article  Google Scholar 

  2. O. Bannykh, V. Blinov, E. Lukin, I.O.P. Conf, Ser. Mater. Sci. Eng. 130, 012001 (2016)

    Google Scholar 

  3. K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. Rep. 65, 39 (2009)

    Article  Google Scholar 

  4. Y.I. Meshcheryakov, A.K. Divakov, N.I. Zigacheva, G.V. Konovalov, B.K. Barakhtin, G.Y. Kalinin, O.V. Fomina, Mater. Phys. Mech. 21, 99 (2014)

    Google Scholar 

  5. V.V. Rybin, V.A. Malyshevskij, GYu. Kalinin, Metally 6, 75 (2001)

    Google Scholar 

  6. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)

    Article  Google Scholar 

  7. T. Wohlers, Wohlers Report 2014: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report (Wohlers Associates Inc., Colorado, 2014)

    Google Scholar 

  8. A. Uriondo, M. Esperon-Miguez, S. Perinpanayagam, Proc. Inst. Mech. Eng. G J. Aer. 229, 2132 (2015)

    Article  Google Scholar 

  9. W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. Williams, C. Wang, Y. Shin, S. Zhang, P. Zavattieri, Comput. Aided Des 69, 65 (2015)

    Article  Google Scholar 

  10. M.M. Cisneros, H.F. Lopez, H. Mancha, E. Rincon, D. Vazquez, M.J. Perez, S.D. De La Torre, Metall. Mater. Trans. A 36, 1309 (2005)

    Google Scholar 

  11. M.M. Cisneros, H.F. Lopez, H. Mancha, D. Vazquez, E. Valdes, G. Mendoza, M. Mendez, Metall. Mater. Trans. A 33, 2139 (2002)

    Article  Google Scholar 

  12. A.A. Al-Joubori, C. Suryanarayana, J. Mater. Sci. 52, 1 (2017)

    Article  Google Scholar 

  13. A.A. Popovich, N.G. Razumov, Met. Sci. Heat Treat. 56, 570 (2015)

    Article  Google Scholar 

  14. A.A. Popovich, N.G. Razumov, Adv. Mater. Lett. 5, 683 (2014)

    Article  Google Scholar 

  15. G.A. Dorofeev, I.V. Sapegina, V.I. Lad’yanov, B.E. Pushkarev, E.A. Pechina, D.V. Prokhorov, Phys. Met. Metallogr. 113, 963 (2012)

    Article  Google Scholar 

  16. M.I. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas: Fundamentals and Applications, vol. 1 (Springer, New York, 1994), pp. 33–43

    Book  Google Scholar 

  17. S.G. Zverev, Ph.D. Thesis (Saint-Petersburg State Technical University, Saint-Petersburg, 2002), pp. 49–87

  18. S. Kumar, V. Selvarajan, Mater. Charact. 59, 781 (2008)

    Article  Google Scholar 

  19. J. He, L. Bai, H. Jin, F. Yuan, Powder Technol. 302, 288 (2016)

    Article  Google Scholar 

  20. J.-J. Wang, J.-J. Hao, Z.-M. Guo, Y.-M. Wang, Rare Met. 34, 431 (2015)

    Article  Google Scholar 

  21. X. Lu, C. Liu, L. Zhu, X. He, J. Hao, X. Qu, Rare Met. Mater. Eng. 42, 1915 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by a Grant from the Russian Science Foundation (Project No. 15-13-00062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay G. Razumov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, N.G., Popovich, A.A. & Wang, Q. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying. Met. Mater. Int. 24, 363–370 (2018). https://doi.org/10.1007/s12540-018-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0040-8

Keywords

Navigation