Metals and Materials International

, Volume 25, Issue 3, pp 779–793 | Cite as

Effect of Forging Type on the Deformation Heterogeneities in Multi-Axial Diagonal Forged AA1100

  • Min-Seong Kim
  • Sang-Chul Kwon
  • Sun-Tae Kim
  • Seong Lee
  • Hyo-Tae JeongEmail author
  • Shi-Hoon ChoiEmail author


The present study investigated the effects that different types of forging exert on the deformation heterogeneities developed in AA1100 during multi-axial diagonal forging. To measure the deformation heterogeneities of deformed workpieces, the values for hardness and Kernel average misorientation were measured at the center section following each forging process. Type-D forging that consists of diagonal forging and return-diagonal forging was relatively advantageous compared with Type-P forging that includes plane forging and return-plane forging for minimizing the non-uniformity of deformation developed in workpieces. The effective strain developed in a workpiece during the 2 types of forging was simulated using 3-D FEA. FEA revealed that the positions and degrees of occurrence for soft and hard-zones in workpieces vary greatly depending on the forging type. Type-D forging was relatively advantageous compared with Type-P forging for minimizing the non-uniformity of effective strain developed in workpieces.


Forging AA1100 Hardness MADF Finite element analysis 



This research was supported by the Basic Research (UD160058BD) of the Agency for Defense Development.


  1. 1.
    S.H. Choi, Y.S. Jin, Mater. Sci. Eng. A 371, 149 (2004)CrossRefGoogle Scholar
  2. 2.
    S.I. Kim, S.H. Choi, Y. Lee, Mater. Sci. Eng. A 406, 125 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Estrin, A. Vinogradov, Acta Mater. 61, 782 (2013)CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu, JOM 68, 1216 (2016)CrossRefGoogle Scholar
  5. 5.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103–189 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Cherukuri, T.S. Nedkova, R. Srinivasan, Mater. Sci. Eng. A 410–411, 394 (2005)CrossRefGoogle Scholar
  7. 7.
    A.S. Khan, C.S. Meredith, Int. J. Plast 26, 189 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Seipp, M.F.X. Wagner, K. Hockauf, I. Schneider, L.W. Meyer, M. Hockauf, Int. J. Plast 35, 155 (2012)CrossRefGoogle Scholar
  9. 9.
    C.F. Gu, L.S. Tóth, D.P. Field, J.J. Fundenberger, Y.D. Zhang, Acta Mater. 61, 3027 (2013)CrossRefGoogle Scholar
  10. 10.
    H.S. Kim, Mater. Sci. Eng. A 328, 317 (2002)CrossRefGoogle Scholar
  11. 11.
    M. Khajouei-Nezhad, M.H. Paydar, R. Ebrahimi, P. Jenei, P. Nagy, J. Gubicza, Mater. Sci. Eng. A 682, 501 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Li, F. Sun, H. Li, Acta Mater. 58, 1317 (2010)CrossRefGoogle Scholar
  13. 13.
    X. Liu, N.T. Nuhfer, A.D. Rollett, S. Sinha, S.B. Lee, J.S. Carpenter, J.E. Ledonne, A. Darbal, K. Barmak, Acta Mater. 64, 333 (2014)CrossRefGoogle Scholar
  14. 14.
    D.G. Kim, H.T. Son, D.W. Kim, Y.H. Kim, K.M. Lee, J. Alloys Compd. 509, 9413 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Mater. Sci. Eng. A 441, 349 (2006)CrossRefGoogle Scholar
  16. 16.
    W.J. Kim, K.E. Lee, S.H. Choi, Mater. Sci. Eng. A 506, 71 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Wronski, B. Bacroix, Acta Mater. 76, 404 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Azimi, S. Tutunchilar, G. Faraji, M.K. Besharati Givi, Mater. Des. 42, 388 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Kvackaj, A. Kovacova, R. Kocisko, J. Bidulska, L. Lityńska-Dobrzyńska, P. Jenei, J. Gubicza, Mater. Charact. 134, 246 (2017)CrossRefGoogle Scholar
  20. 20.
    H.Q. Ning, F.F. Peng, S.F. Zhu, Q.H. Hu, Z.R. Li, J. Zhao, Q. Zhao, S.D. Huang, X. Jin, Mater. Res. Innov. 17, 16 (2013)CrossRefGoogle Scholar
  21. 21.
    N.Y. Yurchenko, N.D. Stepanov, G.A. Salishchev, L.L. Rokhlin, S.V. Dobatkin, in IOP Conference Series Materials Science and Engineering, vol. 63 (2014)Google Scholar
  22. 22.
    V. Uthaisangsuk, U. Prahl, W. Bleck, Eng. Fract. Mech. 78, 469 (2011)CrossRefGoogle Scholar
  23. 23.
    R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, J.K. Chakravartty, Mater. Sci. Eng. A 560, 404 (2013)CrossRefGoogle Scholar
  24. 24.
    T. Li, K. Zhang, X. Li, Z. Du, Y. Li, M. Ma, G. Shi, J. Magnes. Alloys 1, 47 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Łyszkowski, T. Czujko, R.A. Varin, J. Mater. Sci. 52, 2902 (2017)CrossRefGoogle Scholar
  26. 26.
    A. Salandari-Rabori, A. Zarei-Hanzaki, H.R. Abedi, J.S. Lecomte, H. Khatami-Hamedani, J. Alloys Compd. 739, 249 (2018)CrossRefGoogle Scholar
  27. 27.
    S.M. Dasharath, S. Mula, Mater. Sci. Eng. A 675, 403 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Trivedi, K.C. Nune, R.D.K. Misra, S. Goel, R. Jayganthan, A. Srinivasan, Mater. Sci. Eng. A 668, 59 (2016)CrossRefGoogle Scholar
  29. 29.
    S.C. Kwon, S.T. Kim, D.V. Kim, J.K. Lee, S.J. Seo, T.S. Yoon, H.T. Jeong, Trans. Mater. Process 27, 250 (2018)Google Scholar
  30. 30.
    M.S. Kim, J.Y. Jung, Y.M. Song, S.-H. Choi, Int. J. Plast 94, 24 (2017)CrossRefGoogle Scholar
  31. 31.
    S. J. Mu, W. P. Hu, G. Gottstein, Mater. Sci. Forum 584–586, 697 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Printed Electronics EngineeringSunchon National UniversitySuncheonRepublic of Korea
  2. 2.Department of Advanced Metal and Materials EngineeringGangneungRepublic of Korea
  3. 3.Agency for Defense DevelopmentDaejeonRepublic of Korea

Personalised recommendations