Skip to main content
Log in

Role of Heat Treatment on the Fabrication and Electrochemical Property of Ordered TiO2 Nanotubular Layer on the As-Cast NiTi

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We investigated the effect of various heat treatment processes on the formation and electrochemical properties of ordered TiO2 nanotubes (TNTs) on NiTi. In this respect, after solution treatment of as-cast NiTi samples at 900 °C for 1 h, four different heat-treated groups were examined consisting of furnace-cooled sample, water-quenched sample, water-quenched/300 °C-aged treated (300T-NiTi) and water-quenched/500 °C-aged treated (500T-NiTi) samples. Consequently, heat-treated samples were anodized in ethylene glycol solution containing NH4F. Results showed that the microstructure, chemical composition and grain size of the NiTi samples depended on the heat treatment process. Water-quenching and subsequent aging process provided fine precipitations distributed in the grain boundaries and reduced grain size. Furthermore, it was found that TNTs with various distributions and microstructures could be developed depending on the heat-treatment process of NiTi samples as well as anodization voltage and time. Noticeably, anodization of 500T-NiTi samples resulted in formation of well-distributed TNTs with diameters of 30 ± 5 nm. Moreover, heat-treatment process as well as TNT formation resulted in significantly enhanced corrosion resistance of as-cast NiTi substrate and reduced Ni release, depending on the treatment process. Regarding potential applications, anodization of water-quenched and 500 °C aged treated NiTi at 50 V for 10 min could provide nano-scaled biofunctional coating to promote the biological applications of NiTi implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.T. Cheng, P. Shi, G.K.H. Pang, J. Alloy. Compd. 438, 238 (2007)

    Article  Google Scholar 

  2. D. Kapoor, Johnson Matthey Technol. Rev. 61(1), 66 (2017)

    Article  Google Scholar 

  3. C.W. Chan, L. Carson, G.C. Smith, Surf. Coat. Technol. 349, 488 (2018)

    Article  Google Scholar 

  4. R. Hang, X. Huang, L. Tian, Electrochim. Acta 70, 382 (2012)

    Article  Google Scholar 

  5. G. Tepe, J. Schmehl, H.P. Wendel, S. Schaffner, Biomaterials 27, 643 (2006)

    Article  Google Scholar 

  6. S. Shabalovskaya, J. Anderegg, J. Humbeeck, Acta Biomater. 4, 447 (2008)

    Article  Google Scholar 

  7. A. Shanaghi, P.K. Chu, Surf. Coat. Technol. (2018) (in press)

  8. Z. Shi, J. Wang, Z. Wang, Y. Qiao, T. Xiong, Y. Zheng, Coatings 8(10), 346 (2018)

    Article  Google Scholar 

  9. S.N. Meisner, I.V. Vlasov, E.V. Yakovlev, S.V. Panin, L.L. Meisner, F.A. D’yachenko, Mater. Sci. Eng., A 740–741, 381 (2019)

    Article  Google Scholar 

  10. M. Pourmahdavi, N. Parvin, Adv. Mater. Res. 829, 431 (2014)

    Article  Google Scholar 

  11. J.-H. Kim, K. Zhu, Y. Yan, C.L. Perkins, A.J. Frank, Nano Lett. 10, 4099 (2010)

    Article  Google Scholar 

  12. R. Hang, M. Zong, L. Bai, Electrochem. Commun. 71, 28 (2016)

    Article  Google Scholar 

  13. Ch. Huang, Y. Xie, L. Zhou, H. Huan, Smart Mater. Struct. 18, 024003 (2009)

    Article  Google Scholar 

  14. G. Hou, Y. Xie, L. Wu, Int. J. Hydrogen Energy 41, 9295 (2016)

    Article  Google Scholar 

  15. R. Hang, Y. Liu, L. Zhao, A. Gao, L. Bai, X. Huang, X. Zhang, B. Tang, P.K. Chu, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  16. R. Hang, Y. Liu, S. Liu, L. Bai, A. Gao, X. Zhang, X. Huang, B. Tang, P.K. Chu, Corros. Sci. 103, 173 (2016)

    Article  Google Scholar 

  17. S.C. Roy, M. Paulose, C.A. Grimes, Biomaterials 28, 4667 (2007)

    Article  Google Scholar 

  18. P. Lee, Al. Cerchiari, T.A. Desai, Nano Lett. 14, 5021 (2014)

    Article  Google Scholar 

  19. F. Nasirpouri, I. Yousefi, E. Moslehifard, J. Khalil Allafi, Surf. Coat. Technol. 315, 163 (2017)

    Article  Google Scholar 

  20. L. Peng, M.L. Eltgroth, T.J. LaTempa, Biomaterials 30, 1268 (2009)

    Article  Google Scholar 

  21. M. Sinn Aw, K. Gulati, D. Losic, J. Biomater. Nanobiotechnol. 2, 477 (2011)

    Article  Google Scholar 

  22. S. Rana, J. Rawat, M.M. Sorensson, R.D.K. Misra, Acta Biomater. 1, 691 (2006)

    Article  Google Scholar 

  23. B.K. Sunkara, R.D. Misra, Acta Biomater. 4(2), 273 (2008)

    Article  Google Scholar 

  24. S. Ranaab, J. Rawatab, M.M. Sorenssonac, R.D.K. Misra, Acta Biomater. 2(4), 421 (2006)

    Article  Google Scholar 

  25. R. Shohal, M.M. Sorensson, R.S. Srivastava, R.D.K. Misra, Mater. Sci. Eng., B 119(2), 144 (2005)

    Article  Google Scholar 

  26. R. Venkatasubramanian, R.S. Srivastava, R.D.K. Misra, Mater. Sci. Technol. 24, 589 (2013)

    Article  Google Scholar 

  27. S. RanaR, D.K. Misra, Appl. Mater. Sci. Eng. 57, 65 (2005)

    Google Scholar 

  28. K.W.K. Yeunga, K.M.C. Cheunga, W.W. Lua, C.Y. Chun, Mater. Sci. Eng. 383, 213 (2004)

    Article  Google Scholar 

  29. A. Etaati, A. Shokuhfar, E. Omrani, P. Movahed, H. Bolvard, Defect Diffus. Forum 297, 489 (2010)

    Article  Google Scholar 

  30. M. Paryab, A. Nasr, O. Bayat, V. Abouei, A. Eshraghi, Assoc. Metall. Eng. Serbia 16, 123 (2010)

    Google Scholar 

  31. J. Shu-yong, Z. Yan-qiu, F. Hong-tao, Trans. Nonferrous Met. Soc. China 22, 1401 (2012)

    Article  Google Scholar 

  32. J. Shu-yong, Z. Yan-qiu, Trans. Nonferrous Met. Soc 22, 90 (2012)

    Article  Google Scholar 

  33. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary alloy phase diagrams, 2nd edition, vol 3 (Materials Park, OH: ASM International), p. 2874 (1990)

  34. J. Bhagyaraj, K.V. Ramaiah, C.N. Saikrishna, Alloys Compd. 735, 1145 (2013)

    Google Scholar 

  35. E. Omrani, A. Shokuhfar, A. Etaati, A. Dorri, A. Saatian, Defect Diffus. Forum 297–301, 344 (2010)

    Article  Google Scholar 

  36. J. Ridhwan, M. Syafiq, M.H.M. Hafidza, J. Mech. Eng. Technol. 6, 87 (2014)

    Google Scholar 

  37. S.W. Robertso, X.Y. Gong, J. Mater. Sci. 41, 621 (2006)

    Article  Google Scholar 

  38. A.R. Pelton, J. DiCello, S. Miyazaki, Min. Invas. Ther. Allied Technol. 9(1), 107 (2000)

    Article  Google Scholar 

  39. K. Otuka, X. Ren, Mater. Sci. 50(5), 511 (2005)

    Google Scholar 

  40. C. Cheng-lin, C. Jonathan-CY, C. Paul-K, Trans. Nonferrous. Met. Soc. 16, 49 (2006)

    Article  Google Scholar 

  41. ShH El-Hadad, K. Ibrahim, L. Wagner, Hindawi Publishing Corporation, J. Metall. 20, 1 (2014)

    Article  Google Scholar 

  42. J.A. Lozano, B.S. Peña, G.F. Vander Voort, Materials 7, 4224 (2014)

    Article  Google Scholar 

  43. S. Yoriya, W. Kittimeteeworakul, N. Punprasert, J. Chem. Chem. Eng 6, 686 (2012)

    Google Scholar 

  44. K.A. Saharudin, S. Sreekantan, Adv. Mater. Res. 173, 102 (2011)

    Article  Google Scholar 

  45. Ch. Liu, Y. Wang, M. Wang, W. Huang, P.K. Chu, Surf. Coat. Technol. 206, 63 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahshid Kharaziha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, F., Kharaziha, M. & Ashrafi, A. Role of Heat Treatment on the Fabrication and Electrochemical Property of Ordered TiO2 Nanotubular Layer on the As-Cast NiTi. Met. Mater. Int. 25, 617–626 (2019). https://doi.org/10.1007/s12540-018-00228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00228-5

Keywords

Navigation