Metals and Materials International

, Volume 25, Issue 3, pp 584–593 | Cite as

Effect of Prestrain on Hydrogen Embrittlement Susceptibility of EH 36 Steels Using In Situ Slow-Strain-Rate Testing

  • Cheolho Park
  • Namhyun KangEmail author
  • Stephen Liu
  • Juseung Lee
  • Eunjoon Chun
  • Sun-Joon Yoo


Hydrogen can provide pure and clean energy; however, to use it as an energy source, facilities such as hydrogen carriers and recharging stations need to be constructed. Structural steels are affected by hydrogen embrittlement (HE), and their susceptibility to this needs to be investigated prior to their use in construction. Most structural steels are normally fabricated using thermomechanical controlled processing, which produces a large dislocation density to increase strength. This study investigated the prestrain effect on HE susceptibility of EH 36 steels using thermal desorption spectroscopy (TDS) and in situ slow-strain-rate testing. Hydrogen was electrochemically charged into specimens, and the reversible hydrogen content and that relating to trap sites were measured using TDS. With an increase in prestrain, there was increase in the diffusible hydrogen content; furthermore, with hydrogen charging, there was a drastic reduction in total elongation with an increase in prestrain. In addition, there was an increase in HE susceptibility with an increase in prestrain compared to when an air condition was employed. Specifically, there was an abrupt increase in HE sensitivity at a prestrain value between 10 and 15%; strain hardening was more dominant below a prestrain value of 10%; and HE was more dominant above a prestrain value of 15% for EH 36 steels.


Steel Hydrogen embrittlement Prestrain Diffusible hydrogen Thermal desorption spectrometry Slow-strain-rate testing 



This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2016R1D1A1B03933994), and the World Class 300 Project R&D (S2482209) of the MOTIE and MSS (Korea).


  1. 1.
    C. Kim, W. Kim, Y. Kho, Met. Mater. Int. 8, 197 (2002)CrossRefGoogle Scholar
  2. 2.
    H. Ji, I.J. Park, S.M. Lee, Y.K. Lee, J. Alloys Compd. 598, 205 (2014)CrossRefGoogle Scholar
  3. 3.
    T. Zhang, W. Zhao, T. Li, Y. Zhao, Q. Deng, Y. Wang, W. Jiang, Corros. Sci. 131, 104 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Zhang, W. Cao, K. Lu, Z. Wang, Y. Xing, Y. Du, M. Lu, Int. J. Hydrog. Energy 42, 3389 (2017)CrossRefGoogle Scholar
  5. 5.
    I.M. Gadala, M. Abdel Wahab, A. Alfantazi, Mater. Des. 97, 287 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Kuang, Y.F. Cheng, Corros. Sci. 99, 249 (2015)CrossRefGoogle Scholar
  7. 7.
    Q. Liu, B. Irwanto, A. Atrens, Mater. Sci. Eng. A 617, 200 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Villalba, A. Atrens, Eng. Fail. Anal. 16, 164 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Villalba, A. Atrens, Eng. Fail. Anal. 15, 617 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Park, N. Kang, S. Liu, Corros. Sci. 128, 33 (2017)CrossRefGoogle Scholar
  11. 11.
    H.J. Kang, J.S. Yoo, J.T. Park, S.T. Ahn, N. Kang, K.-M. Cho, Mater. Sci. Eng. A 543, 6 (2012)CrossRefGoogle Scholar
  12. 12.
    J.B. Lee, N. Kang, J.T. Park, S.T. Ahn, Y. Do Park, I.D. Choi, K.R. Kim, K.M. Cho, Mater. Chem. Phys. 129, 365 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Park, N. Kang, M. Kim, S. Liu, Mater. Lett. 235, 193 (2019)CrossRefGoogle Scholar
  14. 14.
    J.A. Donovan, Metall. Trans. A 7, 1677 (1976)CrossRefGoogle Scholar
  15. 15.
    M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, D. Raabe, Int. J. Hydrog. Energy 39, 4634 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Li, J. Zhang, Y. Wang, B. Li, P. Zhang, X. Song, Mater. Sci. Eng. A 641, 45 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, A. Wenglorzová, Corros. Sci. 53, 2575 (2011)CrossRefGoogle Scholar
  18. 18.
    L.P.M. Santos, M. Béreš, I.N. Bastos, S.S.M. Tavares, H.F.G. Abreu, M.J. Gomes da Silva, Corros. Sci. 101, 12 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Koyama, E. Akiyama, T. Sawaguchi, K. Ogawa, I.V. Kireeva, Y.I. Chumlyakov, K. Tsuzaki, Corros. Sci. 75, 345 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Clair, M. Foucault, O. Calonne, Y. Lacroute, L. Markey, M. Salazar, V. Vignal, E. Finot, Acta Mater. 59, 3116 (2011)CrossRefGoogle Scholar
  21. 21.
    E. Ju, D. Suh, H.K.D.H. Bhadeshia, Comput. Mater. Sci. 79, 36 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Antoine, S. Vandeputte, J.-B. Vogt, ISIJ Int. 45, 399 (2005)CrossRefGoogle Scholar
  23. 23.
    P.S. De, A. Kundu, P.C. Chakraborti, Mater. Des. 57, 87 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Pal’a, O. Stupakov, J. Bydžovský, I. Tomáš, V. Novák, J. Magn. Magn. Mater. 310, 57 (2007)CrossRefGoogle Scholar
  25. 25.
    Q.Z. Chen, B.J. Duggan, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A, 3423 (2004)CrossRefGoogle Scholar
  26. 26.
    E. Tal-Gutelmacher, D. Eliezer, E. Abramov, Mater. Sci. Eng., A 445–446, 625 (2007)CrossRefGoogle Scholar
  27. 27.
    A.H.M. Krom, A.D. Bakker, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 31, 1475 (2000)CrossRefGoogle Scholar
  28. 28.
    J.P. Hirth, Metall. Trans. A 11, 861 (1980)CrossRefGoogle Scholar
  29. 29.
    D. Pérez Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Acta Mater. 60, 2593 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Hurley, F. Martin, L. Marchetti, J. Chêne, C. Blanc, E. Andrieu, Int. J. Hydrog. Energy 40, 3402 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken, Corros. Sci. 65, 199 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 49, 4081 (2007)CrossRefGoogle Scholar
  33. 33.
    J. Zhao, Z. Jiang, C.S. Lee, Corros. Sci. 82, 380 (2014)CrossRefGoogle Scholar
  34. 34.
    W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982)CrossRefGoogle Scholar
  35. 35.
    A.J. Kumnick, H.H. Johnson, Acta Metall. 28, 33 (1980)CrossRefGoogle Scholar
  36. 36.
    M. Koyama, C. Cem, E. Akiyama, K. Tsuzaki, Acta Mater. 70, 174 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Cheolho Park
    • 1
  • Namhyun Kang
    • 1
    Email author
  • Stephen Liu
    • 2
  • Juseung Lee
    • 3
  • Eunjoon Chun
    • 4
  • Sun-Joon Yoo
    • 5
  1. 1.Department of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA
  3. 3.Land Systems Team 3Defense Agency for Technology and QualityChangwonRepublic of Korea
  4. 4.Laser Application Support CenterKorea Institute of Machinery and MaterialsBusanRepublic of Korea
  5. 5.I-Dasan LINC+ Educational Development InstituteYonginRepublic of Korea

Personalised recommendations