Multi-Doping Effect on Ductility of TiAl3: A DFT Study

Abstract

In this study, mechanical behaviors of D022–TiAl3 intermetallic compound co-doped by W–M (M = C, Ge, Pb, Si and Sn) were simulated using density functional theory. The calculated bulk modulus, shear modulus, Young’s modulus and Pugh’s ratio all confirm that the introduction of W–M co-dopants effectively increases ductility in D022–TiAl3. By detailed thermodynamic and electronic structure analysis, we revealed that W–M co-doped TiAl3 systems are mechanically and thermodynamically stable. Among all systems, the most ductile is realized by W–C co-doping. In addition, the further electronic structure calculations indicated that such high ductility might originate from the dopant-induced d-band shift and the resulting electron redistribution. We systematically investigated the doped TiAl3 systems from both mechanical and electronic points of view. This study may shed some lights on designing novel TiAl-based materials with enhanced ductility.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19(9), 1275–1281 (2011)

    CAS  Article  Google Scholar 

  2. 2.

    C.H. Li, P. Wu, Correlation of bulk modulus and the constituent element properties of binary intermetallic compounds. Chem. Mater. 13(12), 4642–4648 (2001)

    CAS  Article  Google Scholar 

  3. 3.

    C.H. Li, Y.L. Chin, P. Wu, Correlation between bulk modulus of ternary intermetallic compounds and atomic properties of their constituent elements. Intermetallics 12(1), 103–109 (2004)

    CAS  Article  Google Scholar 

  4. 4.

    P. Wu, T. Wu, Temperature-dependent modulus of resilience in metallic solids: calculated from strain-electron-phonon interactions. J. Alloy. Compd. 705, 269–272 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe, K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrog Energy 42(17), 12706–12723 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    H. Adachi, W. Itaka, T. Aida, K. Osamura, M. Imaoka, J. Kusui, Microstructure and mechanical properties of ternary intermetallic compound dispersed P/M Al–Mn–X–Zr (x = Cu, Ni) alloys. Trans. Indian Inst. Metals 62(2), 163–167 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, S.G. Zhou, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: a first-principles investigation. J. Alloy. Compd. 590, 50–60 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    L. R-y, D. Y-h, Electronic structures and thermodynamic properties of HfAl3 in L12, D022 and D023 structures. Trans. Nonferrous Metals Soc. China 26(9), 2404–2412 (2016)

    Article  Google Scholar 

  9. 9.

    H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15(4), 191–215 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    L. Brinson, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J. Mech. Phys. Solids 52(7), 1549–1571 (2004)

    CAS  Article  Google Scholar 

  11. 11.

    S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, Y. Suzuki, A. Masuda, An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater. Struct. 11(2), 218 (2002)

    CAS  Article  Google Scholar 

  12. 12.

    O. Vdovychenko, O. Ivanova, Y. Podrezov, M. Bulanova, I. Fartushna, Mechanical behavior of homogeneous and nearly homogeneous Ti 3 Sn: role of composition and microstructure. Mater. Des. 125, 26–34 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    S.H. Kim, H. Kim, N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518(7537), 77–79 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    O. Engler, C.D. Marioara, T. Hentschel, H.-J. Brinkman, Influence of copper additions on materials properties and corrosion behaviour of Al–Mg alloy sheet. J. Alloy. Compd. 710, 650–662 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    R.L. Fleischer, Effects of composition on the mechanical properties of tough, high-temperature intermetallic compounds. ISIJ Int. 31(10), 1186–1191 (1991)

    CAS  Article  Google Scholar 

  16. 16.

    R. Sujata, S. Bhargava, S. Sangal, Microstructural features of TiAl3 base compounds formed by reaction synthesis. ISIJ Int. 36(3), 255–262 (1996)

    CAS  Article  Google Scholar 

  17. 17.

    D.J. Skinner, M. Zedalis, Elastic modulus versus melting temperature in aluminum based intermetallics. Scr. Metall. 22(11), 1783–1785 (1988)

    CAS  Article  Google Scholar 

  18. 18.

    C.L. Fu, Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti. J. Mater. Res. 5(05), 971–979 (1990)

    CAS  Article  Google Scholar 

  19. 19.

    J.C. Pang, X.P. Cui, A.B. Li, G.H. Fan, L. Geng, Z.Z. Zheng, Q.W. Wang, Effect of solid solution of Si on mechanical properties of TiAl3 based on the multi-laminated Ti-(SiCp/Al) composite system. Mater. Sci. Eng. A Struct. 579, 57–63 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    J. Zhang, Z.X. Guo, F. Pan, Z. Li, X. Luo, Effect of composition on the microstructure and mechanical properties of Mg–Zn–Al alloys. Mater. Sci. Eng., A 456(1–2), 43–51 (2007)

    Article  Google Scholar 

  21. 21.

    T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, X. J-h, Crystal structure, phase stability, and electronic structure of Ti-Al intermetallics: TiAl. Phys. Rev. B 41(18), 12462–12467 (1990)

    CAS  Article  Google Scholar 

  22. 22.

    R.M. Said, M.A.A.M. Salleh, M.I.I. Ramli, N. Saud, M.M.A.B. Abdullah, A.V. Sandu, Microstructure and mechanical properties of lead-free Sn–Cu–Ni composite solder paste reinforced with silicon (Si) particles. AIP Conf. Proc. 1835(1), 020029 (2017)

    Article  Google Scholar 

  23. 23.

    R. Yu, L.L. He, H.Q. Ye, Effect of W on structural stability of TiAl intermetallics and the site preference of W. Phys. Rev. B 65(18), 184102 (2002)

    Article  Google Scholar 

  24. 24.

    Y. Pan, Y. Lin, H. Wang, C. Zhang, Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater. Des. 86, 259–265 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    G. Zhu, Y. Dai, D. Shu, Y. Xiao, Y. Yang, J. Wang, B. Sun, R. Boom, Diffusion mechanisms of vacancy and doped Si in Al3Ti from first-principles calculations. Intermetallics 19(7), 1036–1040 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    D. Jang, J.R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9(3), 215–219 (2010)

    CAS  Article  Google Scholar 

  27. 27.

    H. Niu, X.Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li, Y. Li, Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion. Sci Rep 2, 718 (2012)

    Article  Google Scholar 

  28. 28.

    H. Hu, X. Wu, R. Wang, Z. Jia, W. Li, Q. Liu, Structural stability, mechanical properties and stacking fault energies of TiAl3 alloyed with Zn, Cu, Ag: First-principles study. J. Alloy. Compd. 666, 185–196 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    J. Beddoes, W. Wallace, L. Zhao, Current understanding of creep behaviour of near γ-titanium aluminides. Int. Mater. Rev. 40(5), 197–217 (1995)

    CAS  Article  Google Scholar 

  30. 30.

    J. Triantafillou, J. Beddoes, L. Zhao, W. Wallace, Creep properties of near γ-TiAl + W with a lamellar microstructure. Scr. Metall. Mater. 31(10), 1387–1392 (1994)

    CAS  Article  Google Scholar 

  31. 31.

    M. Zhu, P. Wu, Q. Li, B. Xu, Vacancy-induced brittle to ductile transition of W–M co-doped Al3Ti (M = Si, Ge, Sn and Pb). Sci Rep 7(1), 13964 (2017)

    Article  Google Scholar 

  32. 32.

    Z. Chen, H. Zou, F. Yu, J. Zou, Chemical bonding and pseudogap formation in D022- and L12-structure (V, Ti)Al3. J. Phys. Chem. Solids 71(7), 946–951 (2010)

    CAS  Article  Google Scholar 

  33. 33.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    CAS  Article  Google Scholar 

  34. 34.

    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  35. 35.

    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    CAS  Article  Google Scholar 

  36. 36.

    G. Ghosh, S. Vaynman, M. Asta, M.E. Fine, Stability and elastic properties of L12-(Al, Cu)3(Ti, Zr) phases: Ab initio calculations and experiments. Intermetallics 15(1), 44–54 (2007)

    CAS  Article  Google Scholar 

  37. 37.

    J. Li, M. Zhang, X. Luo, Theoretical investigations on phase stability, elastic constants and electronic structures of D022- and L12-Al3Ti under high pressure. J. Alloy. Compd. 556, 214–220 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    S. Wu, P. Wu, Variation of band gap and vacancy formation energy of lithium nitride with 3d transition metal substitution. J. Mater. Sci. 52(16), 9780–9786 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    S.S. Nayak, S.K. Pabi, B.S. Murty, High strength nanocrystalline L12-Al3(Ti, Zr) intermetallic synthesized by mechanical alloying. Intermetallics 15(1), 26–33 (2007)

    CAS  Article  Google Scholar 

  40. 40.

    S.V. Meschel, O.J. Kleppa, The standard enthalpies of formation of some 3d transition metal aluminides by high-temperature direct synthesis calorimetry, in Metallic alloys: experimental and theoretical perspectives, ed. by J.S. Faulkner, R.G. Jordan (Springer, Dordrecht, 1994), pp. 103–112

    Google Scholar 

  41. 41.

    S. Delsante, G. Ghosh, G. Borzone, A calorimetric study of alloys along the Ti(Zn, Al)3 section. Calphad 33(1), 50–54 (2009)

    CAS  Article  Google Scholar 

  42. 42.

    M. Nassik, F.Z. Chrifi-Alaoui, K. Mahdouk, J.C. Gachon, Calorimetric study of the aluminium–titanium system. J. Alloy. Compd. 350(1–2), 151–154 (2003)

    CAS  Article  Google Scholar 

  43. 43.

    P.-Y. Tang, B.-Y. Tang, Influence of antiphase boundary period parameter M′ on elastic and electronic properties of one dimensional long period structures of Al3Ti. Solid State Commun. 152(21), 1939–1944 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    M. Nakamura, K. Kimura, Elastic constants of TiAl3 and ZrAl3 single crystals. J. Mater. Sci. 26(8), 2208–2214 (1991)

    CAS  Article  Google Scholar 

  45. 45.

    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)

    Google Scholar 

  46. 46.

    J. Yang, J. Huang, Z. Ye, D. Fan, S. Chen, Y. Zhao, First-principles calculations on structural energetics of Cu–Ti binary system intermetallic compounds in Ag–Cu–Ti and Cu–Ni–Ti active filler metals. Ceram. Int. 43(10), 7751–7761 (2017)

    CAS  Article  Google Scholar 

  47. 47.

    S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    CAS  Article  Google Scholar 

  48. 48.

    X. Wang, Y.-T. Zhang, P.-C. Liu, J. Yan, W. Mo, P.-C. Zhang, X.-Q. Chen, Ductile-to-brittle transition and materials’ resistance to amorphization by irradiation damage. RSC Adv. 6(50), 44561–44568 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    F. Chu, T.E. Mitchell, B. Majumdar, D. Miracle, T.K. Nandy, D. Banerjee, Elastic properties of the O phase in Ti–Al–Nb alloys. Intermetallics 5(2), 147–156 (1997)

    CAS  Article  Google Scholar 

  50. 50.

    V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M = Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations. Phys. B 405(22), 4615–4619 (2010)

    CAS  Article  Google Scholar 

  51. 51.

    V.V. Bannikov, I.R. Shein, D.V. Suetin, Structural, elastic and electronic properties of Ir-based carbides-antiperovskites Ir 3 M C (M = Ti, Zr, Nb and Ta) as predicted from first-principles calculations. Comput. Condens. Matter 11, 60–68 (2017)

    Article  Google Scholar 

  52. 52.

    I. Baker, P.R. Munroe, Improving intermetallic ductility and toughness. JOM 40(2), 28–31 (1988)

    CAS  Article  Google Scholar 

  53. 53.

    N.S. Stoloff, Toughening mechanisms in intermetallics. Metall. Trans. A 24(3), 561–567 (1993)

    Article  Google Scholar 

  54. 54.

    D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8(4), 345–349 (1992)

    CAS  Article  Google Scholar 

  55. 55.

    D.-H. Wu, H.-C. Wang, L.-T. Wei, R.-K. Pan, B.-Y. Tang, First-principles study of structural stability and elastic properties of MgPd3 and its hydride. J. Magnes. Alloys 2(2), 165–174 (2014)

    CAS  Article  Google Scholar 

  56. 56.

    M.E. Fine, L.D. Brown, H.L. Marcus, Elastic-constants versus melting temperature in metals. Scr. Metall. 18(9), 951–956 (1984)

    CAS  Article  Google Scholar 

  57. 57.

    M. Alouani, R.C. Albers, M. Methfessel, Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B 43(8), 6500–6509 (1991)

    CAS  Article  Google Scholar 

  58. 58.

    P. Fuentealba, E. Chamorro, J.C. Santos, Chapter 5 understanding and using the electron localization function, in Theoretical and Computational Chemistry, vol 19, ed. by A. Toro-Labbé (Elsevier, London, 2007), pp. 57–85

    Google Scholar 

  59. 59.

    B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, in Advances in Catalysis, vol 45. ed. by B. C. Gates, H. Knozinger (Academic Press, Cambridge, 2000)

    Google Scholar 

  60. 60.

    L. Yi, C. Kuiying, Z. Jinghua, H. Zhuangqi, L. Gang, K. Nicholas, Electronic effects of oxygen and vanadium impurities in TiAl. J. Phys.: Condens. Matter 9(45), 9829 (1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the A*STAR Computational Resource Centre through the use of its high-performance computing facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, B.T., Zhang, J., Sopiha, K.V. et al. Multi-Doping Effect on Ductility of TiAl3: A DFT Study. Met. Mater. Int. 25, 869–879 (2019). https://doi.org/10.1007/s12540-018-00213-y

Download citation

Keywords

  • Multi-doped TiAl3
  • Ductility
  • Elastic properties
  • First-principles calculations
  • Electronic structure