Skip to main content
Log in

Atomistic simulations on intergranular fracture toughness of copper bicrystals with symmetric tilt grain boundaries

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The intergranular fracture toughness of Cu bicrystals with symmetric tilt grain boundaries was investigated using atomistic simulations. Mode I fracture of Cu bicrystals with an intergranular crack was considered. The boundary conditions were specified by the near-tip displacement fields obtained based on linear elastic fracture mechanics (LEFM). Based on the energy interpretation of the energy release rate, a two-specimen method was adopted to determine the fracture toughness. The simulation results of the fracture toughness matched well with those determined using LEFM. In contrast to the toughness obtained using the Griffith energy criterion, the atomistic simulation results for the same bicrystal were not constants, but dependent on the crack-tip circumstances. This behavior was mainly associated with the different local stress conditions and fracture patterns observed for the different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  2. S. Hwang and P. G. McCormick, Met. Mater. Int. 4, 543 (1998).

    Google Scholar 

  3. J. S. Wang and P. M. Anderson, Acta Metall. Mater. 39, 779 (1991).

    Article  Google Scholar 

  4. J. S. Wang and S. D. Mesarovic, Acta Metall. Mater. 43, 3837 (1995).

    Article  Google Scholar 

  5. D. Farkas, Phil. Mag. Lett. 80, 229 (2000).

    Article  Google Scholar 

  6. F. Cleri, S. R. Phillpot, and D. Wolf, Interface Sci. 7, 45 (1999).

    Article  Google Scholar 

  7. A. Luque, J. Aldazabal, J. M. Martínez-Esnaola, and J. Gil Sevillano, Fatigue Fract. Eng. M. 30, 1008 (2007).

    Article  Google Scholar 

  8. V. Yamakov, E. Saether, D. R. Phillips, and E. H. Glaessgen, J. Mater. Sci. 42, 1466 (2007).

    Article  Google Scholar 

  9. Y. Cheng, Z. H. Jin, Y. W. Zhang, and H. Gao, Acta Mater. 58, 2293 (2010).

    Article  Google Scholar 

  10. C. B. Cui and H. G. Beom, J. Mater. Sci. 49, 8355 (2014).

    Article  Google Scholar 

  11. K. S. Cheung and S. Yip, Model. Simul. Mater. Sc. 2, 865 (1994).

    Article  Google Scholar 

  12. Y. G. Xu, G. R. Liu, K. Behdinan, and Z. Fawaz, J. Intell. Mat. Syst. Str. 15, 933 (2004).

    Article  Google Scholar 

  13. S. Zhang, T. Zhu, and T. Belytschko, Phys. Rev. B 76, 094114 (2007).

    Article  Google Scholar 

  14. M. Grujicic, H. Zhao, and G. L. Krasko, Int. J. Refract. Met. H. 15, 341 (1997).

    Article  Google Scholar 

  15. J. J. Möller and E. Bitzek, Acta Mater. 73, 1 (2014).

    Article  Google Scholar 

  16. J. Qu and J. L. Bassani, J. Mech. Phys. Solids 37, 417 (1989).

    Article  Google Scholar 

  17. Z. Suo, Proc. R. Soc. A-Math. Phys. Eng. Sci. 427, 331 (1990).

    Article  Google Scholar 

  18. H. G. Beom, C. B. Cui, and H. S. Jang, Int. J. Eng. Sci. 51, 14 (2012).

    Article  Google Scholar 

  19. H. G. Beom, C. B. Cui, and H. S. Jang, Int. J. Solids Struct. 49, 3461 (2012).

    Article  Google Scholar 

  20. J. A. Begley and J. D. Landes, ASTM STP 514, 1 (1972).

    Google Scholar 

  21. A. A. Griffith, Philos. T. R. Soc. Lond. 221, 163 (1921).

    Article  Google Scholar 

  22. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  23. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  24. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  25. J. D. Rittner and D. N. Seidman, Phys. Rev. B 54, 6999 (1996).

    Article  Google Scholar 

  26. M. A. Tschopp and D. L. McDowell, Philos. Mag. 87, 3147 (2007).

    Article  Google Scholar 

  27. R. J. Swenson, Am. J. Phys. 51, 940 (1983).

    Article  Google Scholar 

  28. D. Chandler, Introduction to Modern Statistical Mechanics, page, Oxford University Press, New York, USA (1987).

    Google Scholar 

  29. A. K. Subramaniyan and C. T. Sun, Int. J. Solids Struct. 45, 4340 (2008).

    Article  Google Scholar 

  30. M. A. Tschopp and D. L. McDowell, Philos. Mag. 87, 3871 (2007).

    Article  Google Scholar 

  31. J. Li, Model. Simul. Mater. Sc. 11, 173 (2003).

    Article  Google Scholar 

  32. C. H. Rycroft, Chaos 19, 041111 (2009).

    Article  Google Scholar 

  33. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Beom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C.B., Beom, H.G. Atomistic simulations on intergranular fracture toughness of copper bicrystals with symmetric tilt grain boundaries. Met. Mater. Int. 24, 35–41 (2018). https://doi.org/10.1007/s12540-017-7307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7307-3

Keywords

Navigation