Skip to main content
Log in

Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Debinding is one of the most critical processes for powder injection molding. The parts in debinding process are vulnerable to defect formation, and long processing time of debinding decreases production rate of whole process. In order to determine the optimal condition for debinding process, decomposition behavior of feedstock should be understood. Since nano powder affects the decomposition behavior of feedstock, nano powder effect needs to be investigated for nano/micro bimodal feedstock. In this research, nano powder effect on decomposition behavior of nano/micro bimodal feedstock has been studied. Bimodal powders were fabricated with different ratios of nano powder, and the critical solids loading of each powder was measured by torque rheometer. Three different feedstocks were fabricated for each powder depending on solids loading condition. Thermogravimetric analysis (TGA) experiment was carried out to analyze the thermal decomposition behavior of the feedstocks, and decomposition activation energy was calculated. The result indicated nano powder showed limited effect on feedstocks in lower solids loading condition than optimal range. Whereas, it highly influenced the decomposition behavior in optimal solids loading condition by causing polymer chain scission with high viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. German and A. Bose, Injection Molding of Metals and Ceramics, pp.11–53, Metal Power Industries Federation, New Jersey, USA (1997).

    Google Scholar 

  2. G. Aggarwal, S. J. Park, I. Smid, and R. M. German, Metall. Mater. Trans. A 38, 606 (2007).

    Article  Google Scholar 

  3. G. Wen, P. Cao, B. Gabbitas, D. Zhang, and N. Edmonds, Metall. Mater. Trans. A 44, 1530 (2013).

    Article  Google Scholar 

  4. M. W. Wu, Z. K. Huang, C. F. Tseng, and K. S. Hwang, Met. Mater. Int. 21, 531 (2015).

    Article  Google Scholar 

  5. A. Páez-Pavón, A. Jiménez-Morales, T. G. Santos, L. Quintino, and J. M. Torralba, J. Magn. Magn. Mater. 416, 342 (2016).

    Article  Google Scholar 

  6. U. M. Attia and J. R. Alcock, J. Micromech. Microeng. 21, 043001 (2011).

    Article  Google Scholar 

  7. J. Rajabi, N. Muhamad, and A. B. Sulong, Microsyst. Technol. 18, 1941 (2012).

    Article  Google Scholar 

  8. C. Shearwood, Y. Q. Fu, L. Yu, and K. A. Khor, Scripta Mater. 52, 455 (2005).

    Article  Google Scholar 

  9. P. C. Yu, Q. F. Li, J. Y. H. Fuh, and P. W. Ho, Microsyst. Technol. 15, 401 (2009).

    Article  Google Scholar 

  10. G. Fu, N. H. Loh, S. B. Tor, B. Y. Tay, Y. Murakoshi, and R. Maeda, Appl. Phys. A 81, 495 (2005).

    Article  Google Scholar 

  11. P. Thomas, B. Levenfeld, A. Várez, and A. Cervera, Int. J. Appl. Ceram. Tec. 8, 617 (2011).

    Article  Google Scholar 

  12. S. Supriadi, E. R. Baek, C. J. Choi, and B. T. Lee, J. Mater. Process. Tech. 187-188, 270 (2007).

    Article  Google Scholar 

  13. M. D. Hayat, G. Wen, T. Li, and P. Cao, J. Mater. Process. Tech. 224, 33 (2015).

    Article  Google Scholar 

  14. S. M Ani, A. Muchtar, N. Muhamad, and J. A. Ghani, Ceram. Int. 40, 2819 (2014).

    Article  Google Scholar 

  15. S. W. Kim, J. Supercrit. Fluid. 51, 339 (2010).

    Article  Google Scholar 

  16. L. Gorjan, G. Blugan, T. Graule, and J. Kuebler, Powder Technol. 273, 197 (2015).

    Article  Google Scholar 

  17. J. Hidalgo, J. P. Fernández-Blázquez, A. Jiménez-Morales, T. Barriere, J. C. Gelin, and J. M. Torralba, Polym. Degrad. Stabil. 98, 2546 (2013).

    Article  Google Scholar 

  18. K. Sharmin and I. Schoegl, Ceram. Int. 40, 14871 (2014).

    Article  Google Scholar 

  19. E. S. Thian, N. H. Loh, K. A. Khor, and S. B. Tor, Adv. Powder Technol. 12, 361 (2001).

    Article  Google Scholar 

  20. P. Thomas-Vielma, A. Cervera, B. Levenfeld, and A. Várez, J. Eur. Ceram. Soc. 28, 763 (2008).

    Article  Google Scholar 

  21. P. C. Yu, Q. F. Li, J. Y. H. Fuh, T. Li, and L. Lu, J. Mater. Process. Tech. 192-193, 312 (2007).

    Article  Google Scholar 

  22. K. Nishiyabu, Some Critical Issues for Injection Molding: Micro Metal Powder Injection Molding, pp.105–130, InTech, Shanghai, China (2012).

    Google Scholar 

  23. S. J. Son, Y. S. Cho, and C. J. Choi, Rev. Adv. Mater. Sci. 28, 190 (2011).

    Google Scholar 

  24. S. J Park, Y. Wu, D. F. Heaney, X. Zou, G. Gai, and R. M. German, Metall. Mater. Trans. A 40, 215 (2009).

    Article  Google Scholar 

  25. Z. Shi, Z. X. Guo, and J. H. Song, Acta Mater. 50, 1937 (2002).

    Article  Google Scholar 

  26. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  27. M. H. I. Ibrahim, N. Muhamad, and A. B. Sulong, IJMME 4, 1 (2009).

    Google Scholar 

  28. J. W. Oh, W. S. Lee, and S. J. Park, Powder Technol. 311, 18 (2017).

    Article  Google Scholar 

  29. J. W. Oh, R. Bollina, W. S. Lee, and S. J. Park, Powder Technol. 302, 168 (2016).

    Article  Google Scholar 

  30. J. Johnson, Met. Powder Rep. 64, 22 (2009).

    Article  Google Scholar 

  31. J. Compton, D. Thompson, D. Kranbuehl, S. Ohl, O. Gain, E. Espuche, et al. Polymer 47, 5303 (2006).

    Article  Google Scholar 

  32. D. Tian, W. Hu, Z. Zheng, H. Liu, and X. Hangbao, J. Appl. Polym. Sci. 100, 1323 (2006).

    Article  Google Scholar 

  33. J. P. Lewicki, J. J. Liggat, and M. Patel, Polym. Degrad. Stabil. 94, 1548 (2009).

    Article  Google Scholar 

  34. Y. Feng, B. Wang, Y. Chen, C. Liu, J. Chen, and C. Shen, Polym. Degrad. Stabil. 119, 295 (2015).

    Article  Google Scholar 

  35. R. E. Harrington and B. H. Zimm, J. Phys. Chem. 69, 161 (1965).

    Article  Google Scholar 

  36. K. B. Abbås, Polymer 22, 836 (1981).

    Article  Google Scholar 

  37. V. A. González-González, G. Neira-Velázquez, and J. L. Angulo-Sánchez, Polym. Degrad. Stabil. 60, 33 (1998).

    Article  Google Scholar 

  38. A. Casale and R. S. Porter, Polymer Stress Reactions, pp.8–80, Academic Press, New York, USA (1978).

    Book  Google Scholar 

  39. X. Colin and J. Verdu, C. R. Chim. 9, 1380 (2006).

    Article  Google Scholar 

  40. M. L. Rathod and J. L. Kokini, J. Food Eng. 118, 256 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.W., Lee, W.S. & Park, S.J. Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading. Met. Mater. Int. 24, 142–148 (2018). https://doi.org/10.1007/s12540-017-7301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7301-9

Keywords

Navigation