Skip to main content
Log in

Identification of Mg2Cu particles in Cu-alloyed austempered ductile iron

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present work, the Mg2Cu precipitates in copper-alloyed austempered ductile iron (ADI) were identified by analyzing techniques such as TEM and SEM with EDS. It was revealed that, in castings made of ADI-containing copper, highly dispersed particles of Mg2Cu are formed, whose size does not exceed <1 μm. The research work was carried out on ductile iron that was austenitized at 900 °C, followed by austempering at 380 °C. The microstructure was investigated using various techniques, including optical microscopy, XRD, SEM, and TEM. In addition to this, the exhibited impact properties of castings with Cu, Ni, and Cu+Ni were also determined. This study casts a new light on the formation of the structure of Cu-alloyed ADI. The highly-dispersive and brittle Mg2Cu particles that are located in the vicinity of the graphite nodules have a negative effect on the impact properties of ADI. It has also been shown that impact strength decreases from levels of 160-180 J (for copper-free ADI) to 90-120 J (for copper-and copper-nickel-alloyed ADI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Cisneros-Guerrer, R. E. Campos-Cambranis, M. Castro-Román, and M. J. Pérez-López, Adv. Mater. Res. 4-5, 415 (1997).

    Article  Google Scholar 

  2. B. N. Olson, K. B. Moore, and G. R. Simula, AFS Trans. 111, 965 (2002).

    Google Scholar 

  3. O. E. Cekic, L. Sidjanin, D. Rajnovic, and S. Balos, Met. Mater. Int. 20, 1131 (2014).

    Article  Google Scholar 

  4. K. L. Hayrynen and K. R. Brandenberg, AFS Trans. 111, 845 (2003).

    Google Scholar 

  5. D. Venugopalan, Metall. Trans. A 21, 913 (1990).

    Article  Google Scholar 

  6. D. J. Moore, J. R. Parolini, and K. B. Rundman, AFS Trans. 111, 911 (2002).

    Google Scholar 

  7. S. M. Butorabi and A. A. Fallah, AFS Trans. 105, 757 (1997).

    Google Scholar 

  8. K. F. Laneri, J. Desimoni, R. C. Mercader, R. W. Gregorutti, and J. L. Sarutti, Metall. Mater. Trans. A 32, 51 (2001).

    Article  Google Scholar 

  9. M. M. Cisneros, M. J. Pérez, R. E. Campos, and E. Valdés, Int. J. Cast Met. Res. 11, 425 (1999).

    Article  Google Scholar 

  10. J. Mallia and M. Grech, Mater. Sci. Tech. 13, 408 (1997).

    Article  Google Scholar 

  11. N. Darwish and R. Elliott, Mater. Sci. Tech. 9, 882 (1993).

    Article  Google Scholar 

  12. K. L. Hayrynen and J. R. Keough, AFS Trans. 113, 803 (2005).

    Google Scholar 

  13. S. Biswas, C. Monroe, and T. Prucha, Int. J. Met. 11, 656 (2017).

    Google Scholar 

  14. F. Zanardi, Metall. Ital. 10, 27 (2005).

    Google Scholar 

  15. F. Zanardi, AFS Trans. 113, 835 (2005).

    Google Scholar 

  16. J. R. Keough, K. L. Hayrynen, and G. L. Pioszak, AFS Procedings 10, 1 (2010).

    Google Scholar 

  17. J. F. Janowak and R. B. Gundlach, AFS Trans. 91, 377 (1983).

    Google Scholar 

  18. D. J. Moore, T. N. Rouns, and K. B. Rundman, AFS Trans. 94, 255 (1986).

    Google Scholar 

  19. N. Darwish and R. Elliott, Mater. Sci. Tech. 9, 572 (1993).

    Article  Google Scholar 

  20. W. S. Owen, Trans. ASME 46, 812 (1954).

    Google Scholar 

  21. I. Tsukatani, S. Hashimoto, and T. Inoue, ISIJ Int. 31, 992 (1991).

    Article  Google Scholar 

  22. E. Fras, M. Górny, E. Tyrala, and H. F. Lopez, Mater. Sci. Tech. 28, 1391 (2012).

    Article  Google Scholar 

  23. C. R. J. Loper, Proc. 65th World Foundry Congr., pp.169–179, Gyengju, Korea (2002).

    Google Scholar 

  24. D. M. Stefanescu and R. Ruxanda, Foundryman 96, 221 (2003).

    Google Scholar 

  25. M. Bamberger, Encycl. Iron, Steel, Their Alloy. 5th ed., pp.196–216, Taylor and Francis, New York, USA (2016).

    Book  Google Scholar 

  26. K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, F. Kurosawa, et al. ISIJ Int. 34, 359 (1994).

    Article  Google Scholar 

  27. M. Tsujikawa, N. Matsumoto, K. Nakamoto, and Y. Michiura, Key Eng. Mater. 457, 151 (2010).

    Article  Google Scholar 

  28. U. Batra, S. Ray, and S. R. Prabhakar, J. Mater. Eng. Perform. 13, 64 (2004).

    Article  Google Scholar 

  29. C. Labrecque and M. Gagne, Can. Metall. Q. 37, 343 (1998).

    Google Scholar 

  30. M. Górny, E. Tyrala, and H. F. Lopez, J. Mater. Eng. Perform. 23, 3505 (2014).

    Article  Google Scholar 

  31. J. G. Pearce and K. Bromage, Copper in Cast Iron, p.1–1–127, Copper Development Assoc, London, UK(1964).

    Google Scholar 

  32. A. P. Druschitz, R. E. Aristizabal, E. Druschitz, C. R. Hubbard, T. R. Watkins, M. Ostrander, et al. Metall. Mater. Trans. A 43, 1468 (2012).

    Article  Google Scholar 

  33. Y. Mi, Scripta Metall. Mater. 32, 1313 (1995).

    Article  Google Scholar 

  34. M. Nili-Ahmadabadi and M. Mosallaiee-Pour, Mat. Sci. Eng. A 373, 309 (2004).

    Article  Google Scholar 

  35. O. Eric, D. Rajnovic, S. Zec, L. Sidjanin, and M. T. Jovanovic, Mater. Charact. 57, 211 (2006).

    Article  Google Scholar 

  36. H. PourAsiabi, H. Saghafian, and H. Pourasiabi, Met. Mater. Int. 19, 67 (2013).

    Article  Google Scholar 

  37. M. N. Ahmadabadi and S. Farjami, Mater. Sci. Tech. 19, 645 (2003).

    Article  Google Scholar 

  38. A. Alhussein, M. Risbet, A. Bastien, J. P. Chobaut, D. Balloy, and J. Favergeon, Mat. Sci. Eng. A 605, 222 (2014).

    Article  Google Scholar 

  39. U. Batra, S. Ray, and S. R. Prabhakar, J. Mater. Eng. Perform. 16, 485 (2007).

    Article  Google Scholar 

  40. P. Dierickx, C. Verdu, A. Reynaud, and R. Fougeres, Scripta Mater. 34, 261 (1996).

    Article  Google Scholar 

  41. J. Lacaze, A. Boudot, V. Gerval, D. Oquab, and H. Santos, Metall. Mater. Trans. A 28, 2015 (1997).

    Article  Google Scholar 

  42. J. Sertucha, P. Larrañaga, J. Lacaze, and M. Insausti, Int. J. Met. 4, 51 (2010).

    Google Scholar 

  43. M. A. Yescas, H. K. D. H. Bhadeshia, and D. J. MacKay, Mat. Sci. Eng. A 311, 162 (2001).

    Article  Google Scholar 

  44. E. El-Magd, Encycl. Iron, Steel, Their Alloy. 5th ed., pp.2188–2233, Taylor and Francis, New York, UK (2016).

    Book  Google Scholar 

  45. Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 1st ed., pp.35–55, Elsevier Science Ltd., Netherlands (2002).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Górny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Górny, M., Tyrała, E., Sikora, G. et al. Identification of Mg2Cu particles in Cu-alloyed austempered ductile iron. Met. Mater. Int. 24, 95–100 (2018). https://doi.org/10.1007/s12540-017-7234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7234-3

Keywords

Navigation