Skip to main content
Log in

Gas metal arc weldability of 1.5 GPa grade martensitic steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zaefferer, J. Ohlert, and W. Bleck, Acta Mater. 52, 2765 (2004).

    Article  Google Scholar 

  2. I. B. Timokhina, P. D. Hodgson, and E. V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004).

    Article  Google Scholar 

  3. G. Frommeyer and U. Brux, Steel Res. Int. 77, 627 (2006).

    Article  Google Scholar 

  4. S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, J. H. Kwak, and K. G. Chin, Korean J. Met. Mater. 48, 377 (2010).

    Article  Google Scholar 

  5. B. W. Choi, D. H. Seo, and J. I. Jang, Metal. Mater. Int. 15, 373 (2009).

    Article  Google Scholar 

  6. H. Oikawa, G. Murayama, S. Hiwatashi, and K. Matsuyama, Weld. World 51, 7 (2007).

    Article  Google Scholar 

  7. R. Rauch, S. Kapl, G. Posch, and K. Radlmayr, BHM Bergund Hüttenmännische Monatshefte 157, 102 (2012).

    Article  Google Scholar 

  8. R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng. 8, 103 (2008).

    Article  Google Scholar 

  9. L. Bracke, K. Verbeken, L. Kestens, and J. Penning, Acta Mater. 57, 1512 (2009).

    Article  Google Scholar 

  10. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mat. Sci. Eng. A 500, 196 (2009).

    Article  Google Scholar 

  11. H.-C. Chen and G.-H. Cheng, J. Mater. Sci. 24, 1991 (1989).

    Article  Google Scholar 

  12. N. Farabi, D. L. Chen, and Y. Zhou, J. Alloy. Compd. 509, 982 (2011).

    Article  Google Scholar 

  13. A. Kumar, S. B. Singh, and K. K. Ray, Mat. Sci. Eng. A 474, 270 (2008).

    Article  Google Scholar 

  14. M. Pouranvari and S. P. H. Marashi, Sci. Technol. Weld. Joi. 15, 149 (2010).

    Article  Google Scholar 

  15. N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties, pp.259–263, Springer International Publishing, Switzerland (2015).

    Book  Google Scholar 

  16. N. Yamauchi, K. Kunishige, T. Taka, and N. Nagao, Tetsu-to-Hagane 68, 1421 (1982).

    Article  Google Scholar 

  17. P. K. Ghosh, P. C. Gupta, R. Avtar, and B. K. Jha, ISIJ Int. 30, 233 (1990).

    Article  Google Scholar 

  18. W. Wang and S. Liu, Weld. J. 81, 132s (2002).

    Google Scholar 

  19. H. K. D. H. Bhadeshia and D. W. Suh, Ironmak. Steelmak. 42, 259 (2015).

    Article  Google Scholar 

  20. E. C. Bain and H. W. Paxton, Alloying Elements in Steel, pp.65–67, American Society for Metals Metals Park, USA (1966).

    Google Scholar 

  21. Y. S. Jong, Y. K. Lee, D. C. Kim, M. J. Kang, I. S. Hwang, and W. B. Lee, Mater. Trans. 52, 1330 (2011).

    Article  Google Scholar 

  22. V. H. Lopez-Cortez and F. A. Reyes-Valdes, Weld. J. 87, 36 (2008).

    Google Scholar 

  23. S. Vignier, E. Biro, and M. Herve, Weld. World 58, 297 (2014)

    Article  Google Scholar 

  24. D. S. Safanama, S. P. H. Marashi, and M. Pouranvari, Sci. Technol. Weld. Joi. 17, 288 (2012).

    Article  Google Scholar 

  25. M. Tamizi, M. Pouranvari, and M. Movahedi, Sci. Technol. Weld. Joi. 22, 327 (2017).

    Article  Google Scholar 

  26. Y. Y. Zhao, Y. S. Zhang, and W. Hu, Sci. Technol. Weld. Joi. 18, 581 (2013).

    Article  Google Scholar 

  27. C. Kim, M. J. Kang, and Y. D. Park, Procedia Engineer. 10, 2226 (2011).

    Article  Google Scholar 

  28. H. Zhao and H. Liu, Trans. China Weld. Inst. 2, 67 (2014).

    Google Scholar 

  29. X. Li, G. Wang, G.-H. Liu, and H. Xu, J. Jilin University (Eng. Tech. Ed.) 44, 708 (2014).

    Google Scholar 

  30. F. Möller, H. Kügler, S. Kötschau, A. Geier, and S.-F. Goecke, Physics Proc. 56, 620 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I., Yun, H., Kim, D. et al. Gas metal arc weldability of 1.5 GPa grade martensitic steels. Met. Mater. Int. 24, 149–156 (2018). https://doi.org/10.1007/s12540-017-7188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7188-5

Keywords

Navigation