Skip to main content
Log in

Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

  • Research Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Chaves, R. E. Melchers, Proc. 22nd International Offshore and Polar Engineering Conference, p. 158, International Society of Offshore and Polar Engineers, Rhodes, Greece (2012).

    Google Scholar 

  2. E. Nyman, Energy Research & Social Science 6, 1 (2015).

    Article  Google Scholar 

  3. J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, and R. Ojeda, J. Loss Prevent. Proc. 37, 39 (2015).

    Article  Google Scholar 

  4. M. Finšgar and J. Jackson, Corros. Sci. 86, 17 (2014).

    Article  Google Scholar 

  5. S. Nešić, Corros. Sci. 49, 4308 (2007).

    Article  Google Scholar 

  6. Y. Hadji, A. Haddad, M. Yahi, M. E. A. Benamar, D. Miroud, M. Hadji, et al. Ceram. Int. 42, 1026 (2016).

    Article  Google Scholar 

  7. M. Osman, M. Shalaby, Mater. Chem. Phys. 77, 261 (2003).

    Article  Google Scholar 

  8. S. Kim, J. Jang, J. Kim, B. J. Kim, K. Y. Sohn, and D.-G. Nam, Korean J. Met. Mater. 54, 585 (2016).

    Article  Google Scholar 

  9. H.-D. Im, W. Kil, K. Shin, B.-H. Koo, Korean J. Met. Mater. 51, 275 (2013).

    Article  Google Scholar 

  10. M. Ericsson, R. Sandström, Int. J. Fatigue 25, 1379 (2003).

    Article  Google Scholar 

  11. M. J. Moradi and M. Ketabchi, Indian J. Sci. Technol. 8, 1 (2015).

    Article  Google Scholar 

  12. I. A. Chaves and R. E. Melchers, Corros. Sci. 53, 4026 (2011).

    Article  Google Scholar 

  13. Z. Panossian, N. L. de Almeida, R. M. F. de Sousa, G. de Souza Pimenta, and L. B. S. Marques, Corros. Sci. 58, 1 (2012).

    Article  Google Scholar 

  14. Y. Ahn, B. Yoon, H. Kim, and C. Lee, Met. Mater. Int. 8, 469 (2002).

    Article  Google Scholar 

  15. C.-M. Lin, J.-J. Liu, H.-L. Tsai, and C.-M. Cheng, J. Chin. Inst. Eng. 34, 1013 (2011).

    Article  Google Scholar 

  16. J. Wang, M.-X. Lu, L. Zhang, W. Chang, L.-N. Xu, and L.-H. Hu, Int. J. Min. Met. Mater. 19, 518 (2012).

    Article  Google Scholar 

  17. H. Naffakh, M. Shamanian, and F. Ashrafizadeh, J. Mater. Process. Tech. 209, 3628 (2009).

    Article  Google Scholar 

  18. C.-M. Lin, H.-L. Tsai, and C. Yang, Surf. Coat. Tech. 206, 2673 (2012).

    Article  Google Scholar 

  19. J. S. Kim, Y. I. Park, and H. W. Lee, Met. Mater. Int. 21, 350 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, S., Lee, S.B., Nam, DG. et al. Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding. Met. Mater. Int. 23, 1168–1175 (2017). https://doi.org/10.1007/s12540-017-7167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7167-x

Keywords

Navigation