Skip to main content
Log in

Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic–metal alloy joints

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag–10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2–δ–La0.7Sr0.3MnO3±δ (GDC–LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC–LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, J. C. Diniz da Costa, et al. J. Membrane Sci. 320, 13 (2008).

    Article  Google Scholar 

  2. S. Baumann, J. M. Serra, M. P. Lobera, S. Escolástico, F. Schulze-Küppers, and W. A. Meulenberg, J. Membrane Sci. 377, 198 (2011).

    Article  Google Scholar 

  3. S. Baumann, W. A. Meulenberg, and H. P. Buchkremer, J. Eur. Ceram. Soc. 33, 1251 (2013).

    Article  Google Scholar 

  4. M. Katsuki, S. Wang, M. Dokiya, and T. Hashimoto, Solid State Ionics 156, 453 (2003).

    Article  Google Scholar 

  5. H. Wang, R. Wang, D. T. Liang, and W. Yang, J. Membrane Sci. 243, 405 (2004).

    Article  Google Scholar 

  6. Y. Zou, W. Zhou, S. Liu, and Z. Shao, J. Eur. Ceram. Soc. 31, 2931 (2011).

    Article  Google Scholar 

  7. F. Schulze-Küppers, S. Baumann, W. A. Meulenberg, D. Stöver, and H. P. Buchkremer, J. Membrane Sci. 433, 121 (2013).

    Article  Google Scholar 

  8. K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Liu, et al. RSC Adv. 1, 1661 (2011).

    Article  Google Scholar 

  9. J. H. Joo, K. S. Yun, Y. Lee, J. Jung, C.-Y. Yoo, and J. H. Yu, ACS Appl. Mater. Inter. 7, 14699 (2015).

    Article  Google Scholar 

  10. R. W. Messler, Joining of Advanced Materials, pp.509–538, Butterworth-Heinemann, New York, USA (1994).

    Google Scholar 

  11. M. G. Nicholas, Joining of Ceramics, pp.128–154, Chapman and Hall, Lincoln, USA (1990).

    Google Scholar 

  12. K. Raju, Muksin, S. Kim, K. Song, J. H. Yu, and D.-H. Yoon, Mater. Design 109, 233 (2016).

    Article  Google Scholar 

  13. J. Y. Kim, J.-P. Choi, and K. S. Weil, Int. J. Hydrogen Energ. 33, 3952 (2008).

    Article  Google Scholar 

  14. K. S. Weil, J. Y. Kim, and J. S. Hardy, Electrochem. Solid St. 8, A133 (2005).

    Article  Google Scholar 

  15. Y. Zhao, J. Malzbender, and S. M. Gross, J. Eur. Ceram. Soc. 31, 541 (2011).

    Article  Google Scholar 

  16. J. Y. Kim, J. S. Hardy, and K. S. Weil, Int. J. Hydrogen Energ. 32, 3655 (2007).

    Article  Google Scholar 

  17. O. M. Akselsen, J. Mater. Sci. 27, 1989 (1992).

    Article  Google Scholar 

  18. O. M. Akselsen, J. Mater. Sci. 27, 569 (1992).

    Article  Google Scholar 

  19. M. S. Reichle, T. Koppitz, and U. Reisgen, Weld. J. 89, 57 (2010).

    Google Scholar 

  20. J. Y. Kim, J. S. Hardy, and K. S. Weil, J. Am. Ceram. Soc. 88, 2521 (2005).

    Article  Google Scholar 

  21. K. Raju, Muksin, and D.-H. Yoon, Ceram. Int. 42, 16392 (2016).

    Article  Google Scholar 

  22. J. S. Hardy, J. Y. Kim, and K. S. Weil, J. Electrochem. Soc. 151, J43 (2004).

    Article  Google Scholar 

  23. V. V. Joshi, A. Meier, J. Darsell, K. S. Weil, and M. Bowden, J. Mater. Sci. 48, 7153 (2013).

    Article  Google Scholar 

  24. H. Chen, L. Li, R. Kemps, B. Michielsen, M. Jacobs, V. Middelkoop, et al. Acta Mater. 88, 74 (2015).

    Article  Google Scholar 

  25. K. M. Erskine, A. M. Meier, and S. M. Pilgrim, J. Mater. Sci. 37, 1705 (2002).

    Article  Google Scholar 

  26. W. Z. Zhu and S. C. Deevi, Mat. Sci. Eng. A 348, 227 (2003).

    Article  Google Scholar 

  27. Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, J. Electrochem. Soc. 150, A1188 (2003).

    Article  Google Scholar 

  28. A. M. Meier, P. Chidambaram, and G. R. Edwards, J. Mater. Sci. 30, 4781 (1995).

    Article  Google Scholar 

  29. S. Kim, J. H. Joo, S.-D. Kim, and S.-K. Woo, Ceram. Int. 39, 9223 (2013).

    Article  Google Scholar 

  30. J. T. Darsell and K. S. Weil, J. Phase Equilib. Diff. 27, 92 (2006).

    Article  Google Scholar 

  31. Z. B. Shao, K. R. Liu, L. Q. Liu, H. K. Liu, and S. X. Dou, J. Am. Ceram. Soc. 76, 2663 (1993).

    Article  Google Scholar 

  32. J. Y. Kim, J. S. Hardy, and K. S. Weil, J. Mater. Res. 20, 636 (2005).

    Article  Google Scholar 

  33. J. Y. Kim and K. S. Weil, J. Am. Ceram. Soc. 90, 3830 (2007).

    Google Scholar 

  34. J. W. Fergus, Mat. Sci. Eng. A 397, 271 (2005).

    Article  Google Scholar 

  35. K. Przybylski, T. Brylewski, E. Durda, R. Gawel, and A. Kruk, J. Therm. Anal. Calorim. 116, 825 (2014).

    Article  Google Scholar 

  36. S. Molin, M. Chen, and P. V. Hendriksen, J. Power Sources 251, 488 (2014).

    Article  Google Scholar 

  37. N. J. Magdefrau, L. Chen, E. Y. Sun, and M. Aindow, J. Power Sources 241, 756 (2013).

    Article  Google Scholar 

  38. R. Sachitanand, M. Sattari, J.-E. Svensson, and J. Froitzheim, Int. J. Hydrogen Energ. 38, 15328 (2013).

    Article  Google Scholar 

  39. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, J. Hjelm, et al. J. Power Sources 315, 339 (2016).

    Article  Google Scholar 

  40. A. Pönicke, J. Schilm, M. Kusnezoff, and A. Michaelis, Fuel Cells 15, 735 (2015).

    Article  Google Scholar 

  41. J. Xiao, N. Prudhomme, N. Li, and V. Ji, Appl. Surf. Sci. 284, 446 (2013).

    Article  Google Scholar 

  42. N. C. Alstrup, N. Langvad, and I. Chorkendorff, Surf. Interface Anal. 22, 441 (1994).

    Article  Google Scholar 

  43. A. Laik, P. Mishra, K. Bhanumurthy, G. B. Kale, and B. P. Kashyap, Acta Mater. 61, 126 (2013).

    Article  Google Scholar 

  44. S. K. Sharma, G. D. Ko, and K. J. Kang, J. Eur. Ceram. Soc. 29, 355 (2009).

    Article  Google Scholar 

  45. C. Cionea, M. D. Abad, Y. Aussat, and D. Frazer, Sol. Energ. Mat. Sol. C. 144, 235 (2016).

    Article  Google Scholar 

  46. H. T. Zheng, Adv. Mat. Res. 941, 212 (2014).

    Google Scholar 

  47. S. Shibagaki, A. Koga, and Y. Shirakawa, Thin Solid Films 303, 101 (1997).

    Article  Google Scholar 

  48. M. Singh, T. P. Shpargel, and R. Asthana, Int. J. Appl. Ceram. Tech. 4, 119 (2007).

    Article  Google Scholar 

  49. D. Liu, H. W. Niu, Y. H. Zhou, X. G. Song, D. Y. Tang, and J. C. Feng, Mater. Design 87, 42 (2015).

    Article  Google Scholar 

  50. X. Dai, J. Cao, J. Liu, D. Wang, and J. Feng, Mat. Sci. Eng. A 646, 182 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FR, W.M., Yoon, DH., Raju, K. et al. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic–metal alloy joints. Met. Mater. Int. 24, 157–169 (2018). https://doi.org/10.1007/s12540-017-7160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7160-4

Keywords

Navigation