Skip to main content
Log in

Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Akselrod and F. J. Bruni, J. Cryst. Growth 360, 134 (2012).

    Article  Google Scholar 

  2. V. A. Tatartchenko, Sapphire Crystal Growth and Applications (Ed. P. Capper), Bulk Crystal Growth of Electronic, Optic and Optoelectronic Materials, pp.299–338, John Wiley & Sons Ltd., England, UK (2005).

    Google Scholar 

  3. C. P. Khattak and F. Schmid, J. Cryst. Growth 225, 572 (2001).

    Article  Google Scholar 

  4. A. E. Paladino and B. D. Roiter, J. Am. Ceram. Soc. 47, 465 (1964).

    Article  Google Scholar 

  5. F. J. Bruni, Cryst. Res. Tech. 50, 133 (2015).

    Article  Google Scholar 

  6. C. Miyagawa, T. Kobayashi, T. Taishi, and K. Hoshikawa, J. Cryst. Growth 372, 95 (2013).

    Article  Google Scholar 

  7. C. Miyagawa, T. Kobayashi, T. Taishi, and K. Hoshikawa, J. Cryst. Growth 402, 83 (2014).

    Article  Google Scholar 

  8. K. Hoshikawa, T. Taishi, E. Ohba, C. Miyagawa, T. Kobayashi, M. Shinozuka, et al. J. Cryst. Growth 401, 146 (2014).

    Article  Google Scholar 

  9. K. Hoshikawa, J. Osada, Y. Saitou, E. Ohba, C. Miyagawa, T. Kobayashi, et al. J. Cryst. Growth 395, 80 (2014).

    Article  Google Scholar 

  10. F. J. Bruni, C. M. Liu, and J. S. Sundberg, Acta Phys. Pol. A 124, 213 (2013).

    Article  Google Scholar 

  11. H. Li, G. Zhao, X. Zeng, Z. Qian, J. Guo, J. Xu, et al. J. Inorg. Mater. 19, 1186 (2004).

    Google Scholar 

  12. H. S. Fang, Y. Y. Pan, L. L. Zheng, Q. J. Zhang, S. Wang, and Z. L. Jin, J. Cryst. Growth 363, 25 (2013).

    Article  Google Scholar 

  13. C. H. Chen, J. C. Chen, Y. S. Chiue, C. H. Chang, C. M. Liu, and C. Y. Chen, J. Cryst. Growth 385, 55 (2014).

    Article  Google Scholar 

  14. L. Wu, J. Zhu, and H. Xie, J. Therm. Spray Techn. 23, 653 (2014).

    Article  Google Scholar 

  15. M. Adak and C. G. Soares, Int. J. Adv. Manuf. Tech. 71, 699 (2014).

    Article  Google Scholar 

  16. H. Zhang, L. L. Zheng, V. Prasad, and D. J. Larson, J. Heat Transf. 120, 865 (1998).

    Article  Google Scholar 

  17. C. K. Chao and S. Y. Hung, J. Cryst. Growth 256, 107 (2003).

    Article  Google Scholar 

  18. H. Jamai, B. Pateyron, H. Sammouda, and M. E. Ganaoui, Int. J. Simul. Multisci. Des. Optim. A 23, 1 (2014)1.

    Google Scholar 

  19. D. Vizman, I. Nicoara, and G. Müller, J. Cryst. Growth 212, 334 (2000).

    Article  Google Scholar 

  20. L. E. Lindgren and R. Hedblom, Commun. Numer. Meth. En. 17, 647 (2001).

    Article  Google Scholar 

  21. S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, J. Eur. Ceram. Soc. 25, 1313 (2005).

    Article  Google Scholar 

  22. T. Vodenitcharov, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, M. Sato, et al. J. Mater. Process. Tech. 194, 52 (2007).

    Article  Google Scholar 

  23. K. P. D. Lagerlöf and A. H. Heuer, J. Am. Ceram. Soc. 77, 385 (1994).

    Article  Google Scholar 

  24. S. L. Korinek and J. Castaing, J. Am. Ceram. Soc. 86, 566 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.H., Lee, Y.C. & Lee, W.J. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect. Met. Mater. Int. 24, 170–179 (2018). https://doi.org/10.1007/s12540-017-7157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7157-z

Keywords

Navigation