Skip to main content
Log in

In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6

  • Research Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A novel technology which was characterized by the vacuum solid state sintering was developed for powder metallurgy high speed steels production. During sintering, both the WC and Mo2C reacted with Fe and transformed to W and Mo rich M6C carbides which were the common hard phases in high speed steels. Also, a high number of W, Mo and Fe were dissolved in VC, forming the MC carbides. The densification of the material mainly relied on the solubility effect during the M6C and MC carbides formation. By alloying with a 0.1 wt% of LaB6 to the steel, the bending strength and the fracture toughness were improved from 3290 MPa and 25.6 MPam1/2 to 4018 MPa and 29.4 MPam1/2, respectively. The TEM analysis demonstrated three types of reaction products by the LaB6 addition: the amorphous phase, the core-shell structure and the La2O3 phase. The impurity elements such as the Mg, Al, Si, S, Ca, and O were absorbed following the LaB6 addition. Moreover, the deoxidization effect caused by the LaB6 addition promoted the sintering at a high-temperature period which contributed to the bending strength and fracture toughness improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Plankensteiner, H. J. Böhm, F. G. Rammerstorfer, V. A. Buryachenko, and G. Hackl, Acta Mater. 45, 1875 (1997).

    Article  Google Scholar 

  2. S. Gimenez, C. Zubizarreta, V. Trabadelo, and I. Iturriza, Mat. Sci. Eng. A 480, 130 (2008).

    Article  Google Scholar 

  3. V. Trabadelo, S. Gimenez, and I. Iturriza, J. Mater. Process. Tech. 202, 521 (2008).

    Article  Google Scholar 

  4. Y. Pan, H. Yang, X. Liu, and X. Bian, Mater. Lett. 58, 1912 (2004).

    Article  Google Scholar 

  5. K. C. Hwang, S. Lee, and H. C. Lee, Mat. Sci. Eng. A 254, 282 (1998).

    Article  Google Scholar 

  6. S Wei, J. Zhu, L. Xu, and R. Long, Mater. Design 27, 58 (2006).

    Article  Google Scholar 

  7. V. Vitry, S. Nardone, J. P. Breyer, M. Sinnaeve, and F. Delaunois, Mater. Design 34, 372 (2012).

    Article  Google Scholar 

  8. C. Rodenburg and W. M. Rainforth, Acta Mater. 55, 2443 (2007).

    Article  Google Scholar 

  9. E. Pippel, J. Woltersdorf, G. Pöckl, and G. Lichtenegger, Mater. Charact. 43, 41 (1999).

    Article  Google Scholar 

  10. W. Rong, H. O. Andren, H. Wiséll, and G. L. Dunlop, Acta Metall. Mater. 40, 1727 (1992).

    Article  Google Scholar 

  11. M. M. Serna and J. L. Rossi, Mater. Lett. 63, 691 (2009).

    Article  Google Scholar 

  12. F.-S. Pan, W.-Q. Wang, A.-T. Tang L.-Z. Wu, T.-T. Liu, and R.-J. Cheng, Prog. Nat. Sci. Mater. 21, 180 (2011).

    Article  Google Scholar 

  13. M. Wieβner, M. Leisch, H. Emminger, and A. Kulmburg, Mater. Charact. 59, 937 (2008).

    Article  Google Scholar 

  14. C. Tornberg and P. Billgren, Met. Powder Rep. 47, 19 (1992).

    Google Scholar 

  15. Z. Y. Liu, N. H. Loh, K. A. Khor, and S. B. Tor, Mat. Sci. Eng. A 293, 46 (2000).

    Article  Google Scholar 

  16. T. B. Sercombe, Mat. Sci. Eng. A 363, 242 (2003).

    Article  Google Scholar 

  17. J. Lentz, A. Röttger, and W. Theisen, Acta Mater. 99, 119 (2015).

    Article  Google Scholar 

  18. M. Wang, S. Mu, F. Sun, and Y. Wang, J. Rare Earth 25, 490 (2007).

    Article  Google Scholar 

  19. X. Zhou, X. Yin, F. Fang, J. Jiang, and W. Zhu, J. Rare Earth 30, 1075 (2012).

    Article  Google Scholar 

  20. R. H. Palma, V. Martinez, and J. J. Urcola, Powder Metall. 32, 291 (1989).

    Article  Google Scholar 

  21. J. O. Andersson, Calphad 12, 9 (1988).

    Article  Google Scholar 

  22. C. B. Pollock and H. H. Stadelmaier Metall. Trans. B 1, 767 (1970).

    Article  Google Scholar 

  23. R. M. German and K. A. D'Angelo Int. Meter. Rev. 29, 249 (1983).

    Google Scholar 

  24. R. M. German and B. H. Rabin, Powder Metall. 28, 7 (1985).

    Article  Google Scholar 

  25. C. H. Hsueh, A. G. Evans, and R. L. Coble, Acta Metall. 30, 1269 (1982).

    Article  Google Scholar 

  26. R. Wähling, P. Beiss, and W. J. Huppmann, Powder Metall. 29, 53 (1986).

    Article  Google Scholar 

  27. C. H. Wen, T. M. Wu, and W. C. J. Wei, J. Eur. Ceram. Soc. 24, 3235 (2004).

    Article  Google Scholar 

  28. C.-M. Chen, L. T. Zhang, W. C. Zhou, and M. Q. Lib, Acta Mater. 47, 1945 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehui He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Yu, L., Li, Z. et al. In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6 . Met. Mater. Int. 23, 1150–1157 (2017). https://doi.org/10.1007/s12540-017-7116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7116-8

Keywords

Navigation