Skip to main content
Log in

Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

  • Research Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Nieto, R. Martinez, L. Mazerolles, and C. Baudin, J. Eur. Ceram. Soc. 24, 2293 (2004).

    Article  Google Scholar 

  2. C. Aksel, P. D. Warren, and F. L. Riley, J. Eur. Ceram. Soc. 24, 2407 (2004).

    Article  Google Scholar 

  3. Y. Agari, M. Tanaka, S. Nagai, and T. J. Uno, J. Appl. Polym. Sci. 34, 1429 (1987).

    Article  Google Scholar 

  4. J. C. Y. Koh and A. Fortini, Int. J. Heat Mass Tran. 16, 2013 (1973).

    Article  Google Scholar 

  5. K. C. Yung and H. Lie, J. Appl. Polym. Sci. 106, 3587 (2007).

    Article  Google Scholar 

  6. R. Berman, Contemp. Phys. 14, 101 (1973).

    Article  Google Scholar 

  7. T. Oh, B. Korean Chem. Soc. 30, 467 (2009).

    Article  Google Scholar 

  8. P. Bujard, Thermal Phenomena in the Fabrication and Operation of Electronic Components: I-THERM’88, pp. 41–49, IEEE, Los Angeles, USA. (1988).

    Google Scholar 

  9. J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, J. B. Yoo, et al. Small 6, 58 (2010).

    Article  Google Scholar 

  10. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183, (2007).

    Article  Google Scholar 

  11. C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, and A. Govindaraj, J. Mater. Chem. 19, 2457 (2009).

    Article  Google Scholar 

  12. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, K. S. Novoselov, et al. Nano Lett. 8, 1704 (2008).

    Article  Google Scholar 

  13. A. Savchenko, Science 323, 589 (2000).

    Article  Google Scholar 

  14. M. Taghioskoui, Mater. Today 12, 34 (2009).

    Article  Google Scholar 

  15. H. C. Youn, S. M. Bak, S. H. Park, S. B. Yoon, K. C. Roh, and K. B. Kim, Met. Mater. Int. 20, 975 (2014).

    Article  Google Scholar 

  16. P. C. Ma, J. K. Kim, and B. Z. Tang, Carbon 44, 3232 (2006).

    Article  Google Scholar 

  17. Y. Nagai and G. C. Lai, J. Ceram. Soc. Jpn. 105, 197 (1997).

    Article  Google Scholar 

  18. C. Yu, D. Li, W. Wu, C. Luo, Y. Zhang, and C. Pan, J. Mater. Sci. 49, 8311 (2014).

    Article  Google Scholar 

  19. S. Ansari and E. P. Giannelis, J. Polym. Sci. B Pol. Phys. 47, 888 (2009).

    Article  Google Scholar 

  20. H. Zhang, W. Zheng, Q. Yan, Y. Yang, J. Wang, Z. Yu, et al. Polymer 51, 1191 (2010).

    Article  Google Scholar 

  21. C. Xu, B. Wei, J. Liang, and D. Wu, Met. Mater. Int. 4, 620 (1998).

    Article  Google Scholar 

  22. T. Varol and A. Canakci, Met. Mater. Int. 21, 704 (2015).

    Article  Google Scholar 

  23. G. Xie, M. Forslund, and J. Pan, ACS Appl. Mater. Inter. 6, 7444 (2014).

    Article  Google Scholar 

  24. K. Jagannadham, J. Appl. Phys. 110, 074901 (2011).

    Article  Google Scholar 

  25. L. D. Wang, Y. Cui, S. Yang, B. Li, Y. Liu, W. Fei, et al. RSC Adv. 5, 19321 (2015).

    Article  Google Scholar 

  26. W. Li, D. Li, Q. Fu, and C. Pan, RSC Adv. 5, 80428 (2015).

    Article  Google Scholar 

  27. S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  28. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dohyung Lee or Hyo-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kwon, HC., Lee, D. et al. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets. Met. Mater. Int. 23, 1144–1149 (2017). https://doi.org/10.1007/s12540-017-7088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7088-8

Keywords

Navigation