Skip to main content

Comparison of structural and optical properties of TeO2 nanostructures synthesized using various substrate conditions

Abstract

Several TeO2 low-dimensional nanostructures were prepared by thermal evaporation using four substrate conditions: (1) a bare substrate, (2) a scratched substrate, (3) a Au-catalyst-assisted substrate, and (4) a multi-walled carbon nanotube (MWCNT)-assisted substrate. Scanning electron microscopy and transmission electron microscopy analysis reveals that the morphologies of the nanostructures synthesized using these methods gradually changed from nanoparticles to ultra-thin nanowires with single tetragonal-type TeO2. Photoluminescence (PL) spectra reveal that the PL intensities of the TeO2 nanomaterials obtained using methods (1) and (2) are slightly increased, whereas the intensities of the TeO2 nanostructures obtained using methods (3) and (4) differ significantly depending on the initial substrate conditions. The emission peak is also blue-shifted from ~440 nm to ~430 nm for the scratched surface condition due to an excitonic transition. The increase in the blue emission for the MWCNT-assisted condition is attributed to the degree and type of excitons and defects in the TeO2 nanostructures.

This is a preview of subscription content, access via your institution.

References

  1. G. Zheng, W. Lu, S. Jin, and C. M. Liber, Adv. Mater. 16, 1890 (2004).

    Article  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, H. Yan, et al. Adv. Mater. 15, 353 (2003).

    Article  Google Scholar 

  3. F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, ACS Nano 6, 9229 (2012).

    Article  Google Scholar 

  4. W. Y. Wu, J. M. Ting, and C. K. Chang, CrystEngComm 12, 1433 (2010).

    Article  Google Scholar 

  5. M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, Nano Lett. 12, 1503 (2012).

    Article  Google Scholar 

  6. X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang, and Z. Fan, ACS Appl. Mater. Inter. 4, 3944 (2012).

    Article  Google Scholar 

  7. N. Zhao, G. Wang, Y. Huang, B. Wang, B. Yao, and Y. Wu, Chem. Mater. 20, 2612 (2008).

    Article  Google Scholar 

  8. B. Wang, Y. H. Yang, and G. W. Yang, Nanotechnology 17, 4682 (2006).

    Article  Google Scholar 

  9. J. Yao, H. Yan, and C. M. Lieber, Nat. Nanotechnol. 8, 329 (2013).

    Article  Google Scholar 

  10. K. G. Lee, R. Wi, M. Imran, T. J. Park, J. Lee, D. H. Kim, et al. ACS Nano 4, 3933 (2010).

    Article  Google Scholar 

  11. K. Liu, M. Kakurai, and M. Aono, Small 8, 3599 (2012).

    Article  Google Scholar 

  12. K. K. Cho, G. B. Cho, K. W. Kim, and K. S. Ryu, Phys. Scripta 811, 014079 (2010).

    Article  Google Scholar 

  13. X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, X. B. Zhao, et al. RSC Adv. 2, 1835 (2012).

    Article  Google Scholar 

  14. J. Chen, X. H. Xia, J. P. Tu, Q. Q. Xiong, Y. X. Yu, C. D. Gu, et al. J. Mater. Chem. 22, 15056 (2012).

    Article  Google Scholar 

  15. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, T. Cardinal, et al. Opt. Lett. 28, 1126 (2003).

    Article  Google Scholar 

  16. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, p. 911, Oxford:Pergamon Press, UK (1984).

    Google Scholar 

  17. T. K. Mandal and S. Ram, Mater. Lett. 57, 2432 (2003).

    Article  Google Scholar 

  18. A. W. Warner, D. L. White, and W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).

    Article  Google Scholar 

  19. N. Gupta and V. Voloshinov, Opt. Lett. 30, 985 (2005).

    Article  Google Scholar 

  20. K. Arshak and O. Korostynska, Mater. Sci. Eng. B-Adv. 107, 224 (2004).

    Article  Google Scholar 

  21. S. N. B. Hodgson and L. Weng, J. Mater. Sci.-Mater. El. 17, 723 (2006).

    Article  Google Scholar 

  22. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and T. Kawabata, Appl. Phys. Lett. 90, 173119 (2007).

    Article  Google Scholar 

  23. H. Zhang and M. T. Swihart, Chem. Mater. 19 (2007) 1290.

    Article  Google Scholar 

  24. Z. Y. Jiang, Z. X. Xie, X. H. Zhang, S. Y. Xie, R. B. Huang, and L. S. Zheng, Inorg. Chem. Commun. 7, 179 (2004).

    Article  Google Scholar 

  25. S. N. B. Hodgson and L. Weng, J. Sol-Gel. Sci. Techn. 18, 145 (2000).

    Article  Google Scholar 

  26. A. Lecomte, F. Bamiere, S. Coste, P. Thomas, and J. C. Champarnaud-Mesjard, J. Eur. Ceram. Soc. 90, 1151 (2007).

    Article  Google Scholar 

  27. A. Huriet, S. Daniele, and L. G. Hubert-Pfalzgraf, Mater. Lett. 59, 2379 (2005).

    Article  Google Scholar 

  28. T. Vasileiadis, V. Dracopoulos, M. Kollia, and S. N. Yannopoulos, Sci. Rep. 3, 1209 (2013).

    Article  Google Scholar 

  29. E. Filippo, T. Siciliano, A. Genga, G. Micocci, M. Siciliano, and M. Tepore, Appl. Surf. Sci. 265, 329 (2013).

    Article  Google Scholar 

  30. K. W. Kolasinski, Curr. Opin. Solid St. M. 10, 182 (2006).

    Article  Google Scholar 

  31. T. Salditt and H. Spohn, Phys. Rev. E 47, 3524 (1993).

    Article  Google Scholar 

  32. Z. A. Munir, J. Mater. Sci. 22, 2221 (1987).

    Article  Google Scholar 

  33. L. Dafinei, C. Dujardin, E. Longo, and M. Vigati, Phys. Status Solidi A 204, 1567 (2007).

    Article  Google Scholar 

  34. Y. Lee, S. J. Yun, Y. Kim, M. S. Kim, G. H. Han, J. Kim, et al. Nanoscale 9, 2272 (2017).

    Article  Google Scholar 

  35. F. Khan, S.-H. Baek, N. Ahmad, G. H. Lee, T. H. Seo, J. H. Kim, et al. Met. Mater. Int. 21, 561 (2015).

    Article  Google Scholar 

  36. Y. Kim and J.-Y. Leem, Korean J. Met. Mater. 54, 423 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhyun Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, TK., Ryou, M., Lee, JW. et al. Comparison of structural and optical properties of TeO2 nanostructures synthesized using various substrate conditions. Met. Mater. Int. 23, 1133–1138 (2017). https://doi.org/10.1007/s12540-017-7047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7047-4

Keywords

  • nanostructured materials
  • oxides
  • crystal growth
  • crystal structure
  • ceramics