Skip to main content
Log in

Recent advances in understanding physical properties of metallurgical slags

  • Review Article
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden’s rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. M. Mudd, Int. J. Sustain. Develop. 16, 204 (2013).

    Article  Google Scholar 

  2. B. Mysen, Eur. J. Mineral. 15, 781 (2003).

    Article  Google Scholar 

  3. B. Mysen, Eur. J. Mineral. 7, 745 (1995).

    Article  Google Scholar 

  4. B. O. Mysen and P. Richet, Silicate Glasses and Melts: Properties and Structure, Vol. 10, p. 169, Elsevier, Netherlands (2005).

    Google Scholar 

  5. B. R. O. Mysen, D. Virgo, and C. M. Scarfe, Am. Mineral. 65, 690 (1980).

    Google Scholar 

  6. F. A. Seifert, B. O. Mysen, and D. Virgo, Am. Mineral. 67, 696 (1982).

    Google Scholar 

  7. J. H. Park, Metall. Mater. Trans. B 44, 938 (2013).

    Article  Google Scholar 

  8. S. Kashio, Y. Iguchi, and T. Goto, Trans. Iron Steel Inst. Jap. 20, 251 (1980).

    Google Scholar 

  9. S. Potgieter-Vermaak, J. Potgieter, M. Belleil, F. DeWeerdt, and R. Van Grieken, Cement Concrete Res. 36, 663 (2006).

    Article  Google Scholar 

  10. Y. Mohassab and H. Y. Sohn, Steel Res. Int. 86, 740 (2015).

    Article  Google Scholar 

  11. K. C. Mills, ISIJ Int. 33, 148 (1993).

    Article  Google Scholar 

  12. K. Mills and B. Keene, Int. Mat. Rev. 1, 1(2013).

    Google Scholar 

  13. I. Sohn and D. J. Min, Steel Res. Int. 83, 611 (2012).

    Article  Google Scholar 

  14. N. Zotov, I. Ebbsjö, D. Timpel, and H. Keppler, Phys. Rev. B 60, 6383 (1999).

    Article  Google Scholar 

  15. B. O. Mysen, D. Virgo, and F. A. Seifert, Rev. Geophys. 20, 353 (1982).

    Article  Google Scholar 

  16. B. O. Mysen, Geochim. Cosmochim. Acta 63, 95 (1999).

    Article  Google Scholar 

  17. H. Park, J. Y. Park, G. H. Kim, and I. Sohn, Steel Res. Int. 83, 150 (2012).

    Article  Google Scholar 

  18. A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 5145 (1998).

    Article  Google Scholar 

  19. R. Oestrike, W.-H. Yang, R. J. Kirkpatrick, R. L. Hervig, A. Navrotsky, and B. Montez, Geochim. Cosmochim. Acta 51, 2199 (1987).

    Article  Google Scholar 

  20. M. E. Brandriss and J. F. Stebbins, Geochim. Cosmochim. Acta 52, 2659 (1988).

    Article  Google Scholar 

  21. H. Maekawa, T. Maekawa, K. Kawamura, and T. Yokokawa, J. Non-Cryst. Solids 127, 53 (1991).

    Article  Google Scholar 

  22. C. I. Merzbacher, B. L. Sherriff, J. S. Hartman, and W. B. White, J. Non-Cryst. Solids 124, 194 (1990).

    Article  Google Scholar 

  23. J. F. Stebbins, Nature 330, 465 (1987).

    Article  Google Scholar 

  24. E. Lorch, J. Phys. C 2, 229 (1969).

    Article  Google Scholar 

  25. A. C. Wright, A. G. Clare, B. Bachra, R. N. Sinclair, A. C. Hannon, and B. Vessal, Trans. Am. Crystallogr. Assoc 27, 239 (1991).

    Google Scholar 

  26. L. Cormier, G. Calas, and P. Gaskell, Chem. Geol. 174, 349 (2001).

    Article  Google Scholar 

  27. L. Cormier, P. Gaskell, G. Calas, and A. Soper, Phys. Rev. B 58, 11322 (1998).

    Article  Google Scholar 

  28. T. Soules, J. Chem. Phys. 71, 4570 (1979).

    Article  Google Scholar 

  29. T. F. Soules and R. F. Busbey, J. Chem. Phys. 78, 6307 (1983).

    Article  Google Scholar 

  30. T. F. Soules, J. Non-Cryst. Solids 49, 29 (1982).

    Article  Google Scholar 

  31. L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).

    Article  Google Scholar 

  32. W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).

    Article  Google Scholar 

  33. B. Warren, J. Am. Ceram. Soc. 24, 256 (1941).

    Article  Google Scholar 

  34. M. Temkin, Acta Physicochim. U.R.S.S. 20, 411 (1945).

    Google Scholar 

  35. G. Toop and C. Somis, Canad. Metall. Quart. 1, 129 (1962).

    Article  Google Scholar 

  36. C. Masson, Proc. Royal Soc. A 1, 201 (1965).

    Article  Google Scholar 

  37. R. Mozzi and B. Warren, J. Appl. Crystall. 2, 164 (1969).

    Article  Google Scholar 

  38. J. H. Park, D. J. Min, and H. S. Song, ISIJ Int. 42, 344 (2002).

    Article  Google Scholar 

  39. H. Kim, W. H. Kim, I. Sohn, and D. J. Min, Steel Res. Int. 81, 261 (2010).

    Article  Google Scholar 

  40. B. De Jong, C. M. Schramm, and V. E. Parziale, J. Am. Chem. Soc. 106, 4396 (1984).

    Article  Google Scholar 

  41. S. Schramm and E. Oldfield, J. Am. Chem. Soc. 106, 2502 (1984).

    Article  Google Scholar 

  42. H. Kim, W. Kim, J. Park, and D. Min, Steel Res. Int. 81, 17 (2010).

    Article  Google Scholar 

  43. J. R. Kim, Y. S. Lee, D. J. Min, S. M. Jung, and S. H. Yi, ISIJ Int. 44, 1291 (2004).

    Article  Google Scholar 

  44. W. Kim, I. Sohn, and D. Min, Steel Res. Int. 81, 735 (2010).

    Article  Google Scholar 

  45. Y. Lee, J. Kim, S. Yi, and D. Min, VII International Conference on Molten Slags Fluxes and Salts, p. 225, The South African Institute of Mining and Metallurgy, South Africa (2004).

    Google Scholar 

  46. Y. S. Lee, D. J. Min, S. M. Jung, and S. H. Yi, ISIJ Int. 44, 1283 (2004).

    Article  Google Scholar 

  47. J. H. Park and D. J. Min, J. Non-Cryst. Solids 337, 150 (2004).

    Article  Google Scholar 

  48. J. H. Park, D. J. Min, and H. S. Song, Metall. Mater. Trans. B 33, 723 (2002).

    Article  Google Scholar 

  49. S.-H. Seok, S.-M. Jung, Y.-S. Lee, and D.-J. Min, ISIJ Int. 47, 1090 (2007).

    Article  Google Scholar 

  50. D. Neuville, L. Cormier, D. d. Ligny, J. Roux, A. Flank, and P. Lagarde, Am. Mineral. 93, 228 (2008).

    Article  Google Scholar 

  51. D. R. Neuville, L. Cormier, A.-M. Flank, V. Briois, and D. Massiot, Chem. Geol. 213, 153 (2004).

    Article  Google Scholar 

  52. D. R. Neuville, L. Cormier, and D. Massiot, Chem. Geol. 229, 173 (2006).

    Article  Google Scholar 

  53. D. R. Neuville, L. Cormier, and D. Massiot, Geochim. Cosmochim. Acta 68, 5071 (2004).

    Article  Google Scholar 

  54. K. E. Kelsey, J. R. Allwardt, and J. F. Stebbins, J. Non-Cryst. Solids 354, 4644 (2008).

    Article  Google Scholar 

  55. J. R. Allwardt and J. F. Stebbins, Am. Mineral. 89, 777 (2004).

    Article  Google Scholar 

  56. D. Li, G. Bancroft, M. Fleet, X. Feng, and Y. Pan, Am. Mineral. 80 432 (1995).

    Article  Google Scholar 

  57. D. Li, G. Bancroft, M. Kasrai, M. Fleet, X. Feng, K. Tan, and B. Yang, Solid State Comm. 87, 613 (1993).

    Article  Google Scholar 

  58. M. Profeta, M. Benoit, F. Mauri, and C. J. Pickard, J. Am. Chem. Soc. 126, 12628 (2004).

    Article  Google Scholar 

  59. S. K. Lee and J. F. Stebbins, J. Non-Cryst. Solids 270, 260 (2000).

    Article  Google Scholar 

  60. S. K. Lee and J. F. Stebbins, Am. Mineral. 84, 937 (1999).

    Article  Google Scholar 

  61. J. F. Stebbins, S. K. Lee, and J. V. Oglesby, Am. Mineral. 84, 983 (1999).

    Article  Google Scholar 

  62. H. Hurst, F. Novak, and J. Patterson, Fuel 78, 1831 (1999).

    Article  Google Scholar 

  63. A. Kondratiev and E. Jak, Met. Mat. Trans. B 32, 1015 (2001).

    Article  Google Scholar 

  64. A. Shankar, M. Görnerup, A. Lahiri, and S. Seetharaman, Ironmaking Steelmaking 34, 447 (2007).

    Article  Google Scholar 

  65. L. Sheludyakov, S. Nurkeev, E. Izotova, M. Kospanov, and A. Sabitov, Kompleksn. Ispol’z. Miner. Syr’va 4, 62 (1983).

    Google Scholar 

  66. F. Johannsen and H. Brunion, Z. Erz. Metall. 12, 272 (1959).

    Google Scholar 

  67. J. S. Machin and D. L. Hanna, J. Am. Ceram. Soc. 28, 310 (1945).

    Article  Google Scholar 

  68. J. S. Machin, T. B. Yee, and D. Hanna, J. Am. Ceram. Soc. 35, 322 (1952).

    Article  Google Scholar 

  69. P. Williams, M. Sunderland, and G. Briggs, Trans. AIME C 92 (1983).

  70. L. Bodnar, Hut. Listy 33, 497 (1978).

    Google Scholar 

  71. F. D. Richardson, Physical Chemistry of Melts in Metallurgy, p. 135, Academic Press, USA (1974).

    Google Scholar 

  72. G. Gibbs, E. Meagher, M. Newton, and D. Swanson, Structure and Bonding in Crystals, p. 195, Academic Press, USA (1981).

    Book  Google Scholar 

  73. J. Tosspr-r, Am. Mineral. 78, 911 (1993).

    Google Scholar 

  74. A. Navrotsky, K. Geisinger, P. McMillan, and G. Gibbs, Phys. Chem. Miner. 11, 284 (1985).

    Article  Google Scholar 

  75. C. Romano, B. Poe, V. Mincione, K. U. Hess, and D. B. Dingwell, Chem. Geol. 174, 115 (2001).

    Article  Google Scholar 

  76. D. J. Min, E. J. Jung, S. H. Lee, and W. H. Kim, Korean J. Met. Mater. 53, 352 (2015).

    Article  Google Scholar 

  77. J. H. Kim, S. H. Hong, S. W. Joo, J. W. Shin, D. H. Kim, B. D. You, Korean J. Met. Mater. 52, 909 (2014).

    Article  Google Scholar 

  78. L. Zhou, W. Wang, B. Lu, G. Wen, and J. Yang, Met. Mater. Int. 21, 126 (2015).

    Article  Google Scholar 

  79. M. J. Toplis and D. B. Dingwell, Geochim. Cosmochim. Acta 68, 5169 (2004).

    Article  Google Scholar 

  80. J. H. Park, D. J. Min, and H. S. Song, Metall. Mater. Trans. B 35, 269 (2004).

    Article  Google Scholar 

  81. Y. Kang and K. Morita, ISIJ Int. 46, 420 (2006).

    Article  Google Scholar 

  82. Y.-U. Han and D. J. Min, Under Progress.

  83. K. E. Kelsey, J. F. Stebbins, L.-S. Du, J. L. Mosenfelder, P. D. Asimow, and C. A. Geiger, Am. Mineral. 93, 134 (2008).

    Article  Google Scholar 

  84. S. Lee and D. J. Min, J. Am. Ceram. Soc. Under Review (2016).

    Google Scholar 

  85. N. Saito, N. Hori, K. Nakashima, and K. Mori, Metall. Mater. Trans. B 34, 509 (2003).

    Article  Google Scholar 

  86. A. Shankar, M. Görnerup, A. Lahiri, and S. Seetharaman, Metall. Mater. Trans. B 38, 911 (2007).

    Article  Google Scholar 

  87. S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima, ISIJ Int. 46, 352 (2006).

    Article  Google Scholar 

  88. D. B. Dingwell and S. L. Webb, Phys. Chem. Miner. 16, 508 (1989).

    Article  Google Scholar 

  89. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Article  Google Scholar 

  90. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  91. I. Avramov and A. Milchev, J. Non-Cryst. Solids 104, 253 (1988).

    Article  Google Scholar 

  92. J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Proc. Natl. Acad. Sci. USA 106, 19780 (2009).

    Article  Google Scholar 

  93. G. Gruener, P. Odier, D. D. S. Meneses, P. Florian, and P. Richet, Phys. Rev. B 64, 024206 (2001).

    Article  Google Scholar 

  94. S. Fu, Phys. Chem. Glasses 38, 100 (1997).

    Google Scholar 

  95. S. Sridhar, J. Met 54, 46 (2002).

    Google Scholar 

  96. Y. Shiraishi and T. Saito, J. Jpn. Inst. Metl. 29, 614 (1965).

    Google Scholar 

  97. H. Kim and I. Sohn, ISIJ Int. 51, 1 (2011).

    Article  Google Scholar 

  98. J. O. M. Bockris and A. K. Reddy, Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science 2nd ed, p. 119, Springer, USA (2000).

    Google Scholar 

  99. D. Virgo, B. Mysen, and I. Kushiro, Science 208, 1371 (1980).

    Article  Google Scholar 

  100. J. C. Ghosh, J. Chem. Soc. Trans. 113, 449 (1918).

    Article  Google Scholar 

  101. J. C. Dyre, J. Appl. Phys. 64, 2456 (1988).

    Article  Google Scholar 

  102. K. Funke, Prog. Solid State Chem. 22, 111 (1993).

    Article  Google Scholar 

  103. M. Bockris, J. Kitchener, S. Ignatowicz, and J. Tomlinson, Trans. Faraday Soc. 48, 75 (1952).

    Article  Google Scholar 

  104. A. Adachi and K. Ogino, Technology Reports of the Osaka University 7, 121 (1957).

    Google Scholar 

  105. H. Inouye, J. Tomlinson, and J. Chipman, Trans. Faraday Soc 49, 796 (1953).

    Article  Google Scholar 

  106. W. A. Fischer and H. Vom Ende, Arch. Eisenhuttenwes 21, 217 (1950).

    Google Scholar 

  107. G. Victorovich, C. Diaz, and D. Vallbacka, J. Met. 36, 93 (1984).

    Google Scholar 

  108. A. Wejnarth, Trans. Electrochem. Soc. 65, 177 (1934).

    Article  Google Scholar 

  109. H. Winterhager, L. Greiner, and R. Kammel, Untersuchungenüber die Dichte und elektrische Leitfähigkeit von Schmelzen der Systeme CaO-Al2O3-SiO2 und CaO-MgOAl2O3-SiO2, p. 44, Westdeutscher Verlag, Cologne, UK (1966).

    Google Scholar 

  110. K. Narita, T. Onoye, T. Ishii, and K. Uemura, Tetsu-to-Hagané 61, 2943 (1975).

    Google Scholar 

  111. E. Dancy and G. Derge, Trans. AIME 236, 1642 (1966).

    Google Scholar 

  112. M. Simnad and G. Derge, J. Chem. Phys. 21, 933 (1953).

    Article  Google Scholar 

  113. M. Simnad, G. Derge, and I. George, Trans. AIME 21, 933 (1954).

    Google Scholar 

  114. D. Dukelow and G. Derge, Trans. AIME 218, 139 (1960).

    Google Scholar 

  115. W. R. Dickson and E. B. Dismukes, Trans. AIME 224, 505 (1962).

    Google Scholar 

  116. N. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Article  Google Scholar 

  117. D. Emin, C. Seager, and R. K. Quinn, Phys. Rev. Lett. 28, 813 (1972).

    Article  Google Scholar 

  118. H. Mori, H. Matsuno, and H. Sakata, J. Non-Cryst. Solids 276, 78 (2000).

    Article  Google Scholar 

  119. M. Sayer and A. Mansingh, Phys. Rev. B 6, 4629 (1972).

    Article  Google Scholar 

  120. M. Sayer, A. Mansingh, J. Reyes, and G. Rosenblatt, J. Appl. Phys. 42, 2857 (1971).

    Article  Google Scholar 

  121. G. Greaves, J. Non-Cryst. Solids 11, 427 (1973).

    Article  Google Scholar 

  122. A. Allanore, L. Yin, and D. R. Sadoway, Nature 497, 353 (2013).

    Article  Google Scholar 

  123. A. Ducret, D. Khetpal, and D. R. Sadoway, Proc. Electrochemical Society Meeting, p. 347, ECS Meeting, Philadelphia, USA (2002).

    Google Scholar 

  124. N. A. Fried, K. G. Rhoads, and D. R. Sadoway, Electrochimica acta 46, 3351 (2001).

    Article  Google Scholar 

  125. Y.-U. Han and D. J. Min, under progress.

  126. P. G. Bruce, J. Evans, and C. A. Vincent, Solid State Ionics 28, 918 (1988).

    Article  Google Scholar 

  127. P. G. Bruce and C. A. Vincent, J. Electroanal. Chem. Interfacial Electrochem. 225, 1 (1987).

    Article  Google Scholar 

  128. M. Barati and K. S. Coley, Metall. Mater. Trans. B 37, 41 (2006).

    Article  Google Scholar 

  129. J. Kjeldsen, M. M. Smedskjaer, J. C. Mauro, R. E. Youngman, L. Huang, and Y. Yue, J. Non-Cryst. Soc. 369, 61 (2013).

    Article  Google Scholar 

  130. J. Butler, Proc. Roy. Soc. A 135, 348 (1932).

    Article  Google Scholar 

  131. T. Tanaka and T. Lida, Steel Res. Int. 65, 21 (1994).

    Article  Google Scholar 

  132. T. Tanaka and S. Hara, Z. Metall. 90, 348 (1999).

    Google Scholar 

  133. R. Speiser, D. R. Poirier, and K. Yeum, Scr. Mater. 21, 687 (1987).

    Google Scholar 

  134. K. Yeum, R. Speiser, and D. R. Poirier, Met. Trans. B 20, 693 (1989).

    Article  Google Scholar 

  135. T. Tanaka, S. Hara, M. Ogawa, and T. Ueda, Z. Metall. 89, 368 (1998).

    Google Scholar 

  136. T. Ueda, T. Tanaka, and S. Hara, Z. Metall. 90, 342 (1999).

    Google Scholar 

  137. T. Tanaka, T. Kitamura, and I. A. Back, ISIJ Int. 46, 400 (2006).

    Article  Google Scholar 

  138. R. Boni and G. Derge, Trans. AIME. 206, 53 (1956).

    Google Scholar 

  139. V. Elyutin, B. Mitin, and Y. S. Anisimov, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall, 42 (1974).

    Google Scholar 

  140. L. Shartsis and S. Spinner, J. Res. Nat. Bur. Stand. 46, 385 (1951).

    Article  Google Scholar 

  141. T. King, J. Soc. Glass Technol. 35, 84 (1951).

    Google Scholar 

  142. M. Mandira, H. Dharwadkar, and D. Kumar, Trans. AIME. 96, C93 (1987).

    Google Scholar 

  143. J. Elliott and M. Mounier, Canad. Metall. Quart. 21, 415 (2013).

    Article  Google Scholar 

  144. A. V. Pavlov, A. N. Kvyatkovskii, B. P. Chentsov, N. A. Vatolin, and A. F. Kurochkin, Kompleksn. Ispol’z. Miner. Syr’va 2, 39 (1980).

    Google Scholar 

  145. E. L. Murav’eva and L. I. Kaplun, Adgez. Raps. Paike Mater. 12, 26 (1984).

    Google Scholar 

  146. Y. Suginohara, T. Yanagase, and H. Ito, Trans. Jap. Inst. Metals 3, 227 (1962).

    Article  Google Scholar 

  147. K. R. Harris, J. Phys. Chem. B 114, 9572 (2010).

  148. W. Xu, E. I. Cooper, and C. A. Angell, J. Phys. Chem. B 107, 6170 (2003).

    Article  Google Scholar 

  149. M. Yoshizawa, W. Xu, and C. A. Angell, J. Am. Chem. Soc. 125, 15411 (2003).

    Article  Google Scholar 

  150. W. Xu and C. A. Angell, Science 302, 422 (2003).

    Article  Google Scholar 

  151. D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, and K. Fraser, Phys. Chem. Chem. Phys. 11, 4962 (2009).

    Article  Google Scholar 

  152. C. Zhao, G. Burrell, A. A. Torriero, F. Separovic, N. F. Dunlop, A. M. Bond, et al. J. Phys. Chem. B 112, 6923 (2008).

    Article  Google Scholar 

  153. G.-H. Zhang, B.-J. Yan, K.-C. Chou, and F.-S. Li, Metall. Mater. Trans. B 42, 261 (2011).

    Article  Google Scholar 

  154. J. M. Bockris, J. Mackenzie, and J. Kitchener, Trans. Faraday Soc. 51, 1734 (1955).

    Article  Google Scholar 

  155. G. Urbain, Y. Bottinga, and P. Richet, Geochim. Cosmochim. Acta 46, 1061 (1982).

    Article  Google Scholar 

  156. P. Kozakevitch, Rev. Met 57, 149 (1960).

    Google Scholar 

  157. E. Eipeltauer and G. Jangg, Kolloid-Zeitschrift 142, 77 (1955).

    Article  Google Scholar 

  158. H. Oltmann and E. Pretorius, Proc. Electric Furnace Conference, p. 535 American Institute of Mining, Metallurgical, and Petroleum Enginers, New York, USA (2002).

    Google Scholar 

  159. C. Cooper and J. Kitchener, J. Iron Steel Inst. London 9, 48 (1959).

    Google Scholar 

  160. P. Kozakevitch, J. Met. 21, 57 (1969).

    Google Scholar 

  161. J. Swisher and C. McCabe, Trans. AIME 230, 1669 (1964).

    Google Scholar 

  162. D. Skupien and D. Gaskell, Metall. Mater. Trans. B 31, 921 (2000).

    Article  Google Scholar 

  163. J. W. Gibbs, H. A. Bumstead, and W. R. Longley, The Collected Works of J. Willard Gibbs, Vol. 1, p. 1, Longmans, Green and Co., New York, USA (1928).

    Google Scholar 

  164. Y. Ogawa, D. Huin, H. Gaye, and N. Tokumitsu, ISIJ Int. 33, 224 (1993).

    Article  Google Scholar 

  165. Y. Ogawa, H. Katayama, H. Hirata, N. Tokumitsu, and M. Yamauchi, ISIJ Int. 32, 87 (1992).

    Article  Google Scholar 

  166. S. S. Ghag, P. C. Hayes, and H.-G. Lee, ISIJ Int. 38, 1201 (1998).

    Article  Google Scholar 

  167. K. Ito and R. Fruehan, Metall. Mater. Trans. B 20, 509 (1989).

    Article  Google Scholar 

  168. K. Ito and R. Fruehan, Metall. Mater. Trans. B 20, 515 (1989).

    Article  Google Scholar 

  169. R. Jiang and R. Fruehan, Metall. Mater. Trans. B 22, 481 (1991).

    Article  Google Scholar 

  170. S.-M. Jung and R. J. Fruehan, ISIJ Int 40, 348 (2000).

    Article  Google Scholar 

  171. R. Roth, R. Jiang, and R. Fruehan, Iron & Steelmaker 19, 55 (1992).

    Google Scholar 

  172. Y. Zhang and R. Fruehan, Metall. Mater. Trans. B 26, 803 (1995).

    Article  Google Scholar 

  173. B. Ozturk and R. Fruehan, Metall. Mater. Trans. B 26, 1086 (1995).

    Article  Google Scholar 

  174. Y. Zhang and R. Fruehan, Metall. Mater. Trans. B 26, 813 (1995).

    Article  Google Scholar 

  175. H. S. Kim, D. J. Min, and J. H. Park, ISIJ Int. 41, 317 (2001).

    Article  Google Scholar 

  176. A. Kapilashrami, A. K. Lahiri, M. Görnerup, and S. Seetharaman, Metall. Mater. Trans. B 37, 145 (2006).

    Article  Google Scholar 

  177. A. K. Lahiri and S. Seetharaman, Metall. Mater. Trans. B 33, 499 (2002).

    Article  Google Scholar 

  178. A. Kapilashrami, M. Görnerup, S. Seetharaman, and A. Lahiri, Metall. Mater. Trans. B 37, 109 (2006).

    Article  Google Scholar 

  179. J.-Y. Choi and H.-G. Lee, ISIJ Int. 42, 221 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Joon Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, D.J., Tsukihashi, F. Recent advances in understanding physical properties of metallurgical slags. Met. Mater. Int. 23, 1–19 (2017). https://doi.org/10.1007/s12540-017-6750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6750-5

Keywords

Navigation