Skip to main content
Log in

Evaluation of the ductile-to-brittle transition temperature of a silicon steel under various strain rate conditions with a servo-hydraulic high speed testing machine

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of an empirical model of the Ductile-to-Brittle Transition Temperature (DBTT) for 3.4% silicon steel based on tensile test results at strain rates ranging from 0.001 s‒1 to 100 s‒1. Dynamic tensile tests are conducted using an in-house servo hydraulic tensile test machine at strain rates of 1 s‒1, 10 s‒1, and 100 s‒1 and quasi-static tensile tests are conducted using Instron 4206 at strain rates of 0.001 s‒1 and 0.01 s‒1 with an environmental chamber. Fracture elongations are measured by a DIC method during all tests using the high-speed camera for accurate measurement. The DBTT of 3.4% silicon steel is presented in terms of fracture strain with the variation of the temperature and the strain rate. It is demonstrated from the test results that the DBTT increases as the strain rate increases. An empirical model of the DBTT is constructed in terms of strain rate, temperature and fracture elongation. The parameters of the empirical model are calculated from experimental results obtained at various temperatures and strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Moses, J. Magn. Magn. Mater. 112, 150 (1992).

    Article  Google Scholar 

  2. Y. G. Ko, H. W. Yang, and J. H. Park, Korean J. Met. Mater. 53, 244 (2015).

    Article  Google Scholar 

  3. K. Honma, T. Nozawa, H. Kobayashi, Y. Shimoyama, I. Tachino, and K. iyoshi, IEEE T. Magn. 21, 1903 (1985).

    Article  Google Scholar 

  4. A. J. Moses, IEE Proc.-A 137, 233 (1990).

    Google Scholar 

  5. S.-J. Choi, H.-D. Joo, J.-T. Park, and N.-J. Park, Korean J. Met. Mater. 54, 540 (2016).

    Article  Google Scholar 

  6. Y. Sato, T. Sato, and Y. Okazaki, Mater. Sci. Eng. 99, 73 (1988).

    Article  Google Scholar 

  7. T. Yamaji, M. Abe, Y. Takada, K. Okada, and T. Hiratani, J. Magn. Magn. Mater. 133, 187 (1994).

    Article  Google Scholar 

  8. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, 2 nd ed., pp. 480–485, Cambridge University Press, Cambridge, UK (2009).

    Google Scholar 

  9. W. Lei, X. Van, and M. Yao, Eng. Fract. Mech. 46, 583 (1993).

    Article  Google Scholar 

  10. J. M. Baik, J. Kameda, and O. Buck, The Use of Small-Scale Specimens for Testing Irradiated Material, ASTM STP 888, p. 92, ASTM International, USA (1986).

    Book  Google Scholar 

  11. T. Misawa, T. Adachi, M. Saito, and Y. Hamaguchi, J. Nucl. Mater. 150, 194 (1987).

    Article  Google Scholar 

  12. M. Eskner and R. Sandström, Surf. Coat. Tech. 165, 71 (2003).

    Article  Google Scholar 

  13. G. Kohse, M. Ames, and O. K. Harling, J. Nucl. Mater. 141, 513 (1986).

    Article  Google Scholar 

  14. M. Z. Alam, D. Chatterjee, S. V. Kamat, V. Jayaram, and D. K. Das, Mat. Sci. Eng. A 527, 7147 (2010).

    Article  Google Scholar 

  15. D. Pan, M. W. Chen, P. K. Wright, and K. J. Hemker, Acta Mater. 51, 2205 (2003).

    Article  Google Scholar 

  16. A. K. Ray, B. Goswami, M. P. Singh, D. K. Das, N. Roy, A. K. Ray, et al. Mater. Charact. 57, 199 (2006).

    Article  Google Scholar 

  17. A. K. Ray, N. Roy, A. Kar, A. K. Ray, S. C. Bose, G. Das, S. V. Joshi, et al. Mat. Sci. Eng. A 505, 96 (2009).

    Article  Google Scholar 

  18. H. Huh, J. H. Lim, and S. H. Park, Int. J. Automot. Techn. 10, 195 (2009).

    Article  Google Scholar 

  19. M. Kang, H. Kim, S. Lee, and S. Y. Shin, Met. Mater. Int. 21, 628 (2015).

    Article  Google Scholar 

  20. A. Bhanage, N. Satonkar, P. Deshmukh, and R. Sundge, Int. J. Eng. Techn. 6, 2129 (2014).

    Google Scholar 

  21. B. J. Kim, R. Kasada, A. Kimura, and H. Tanigawa, J. Nucl. Mater. 417, 135 (2011).

    Article  Google Scholar 

  22. J. Capelle, J. Furtado, Z. Azari, S. Jallais, and G. Pluvinage, Eng. Fract. Mech. 110, 270 (2013).

    Article  Google Scholar 

  23. C. M. Moura, J. J. Vilela, E. G. Rabello, D. G. P. Martins, and J. R. G. Carneiro, Proc. INAC 2009, Rio de Janeiro, Brazil (2009).

    Google Scholar 

  24. S. A. Khan, P. Chivavibul, P. Sedlak, S. Arai, and M. Enoki, Metall. Mater. Trans. A 44, 3623 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Huh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, J., Huh, H. & Kim, Js. Evaluation of the ductile-to-brittle transition temperature of a silicon steel under various strain rate conditions with a servo-hydraulic high speed testing machine. Met. Mater. Int. 23, 736–744 (2017). https://doi.org/10.1007/s12540-017-6703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6703-z

Keywords

Navigation