Metals and Materials International

, Volume 23, Issue 4, pp 726–735 | Cite as

Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel

  • M. A. Mohtadi-BonabEmail author
  • M. Eskandari
  • R. Karimdadashi
  • J. A. Szpunar


In this study, the surface and cross section of an as-received API X70 pipeline steel was studied by SEM and EDS techniques in order to categorize the shape and morphology of inclusions. Then, an electrochemical hydrogen charging using a mixed solution of 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate has been utilized to create hydrogen cracks in X70 steel. After hydrogen charging experiments, the cross section of this steel has been accurately checked by SEM in order to find out hydrogen cracks. The region of hydrogen cracks was investigated by SEM and EBSD techniques to predict the role of different microstructural parameters involving hydrogen induced cracking (HIC) phenomenon. The results showed that inclusions were randomly distributed in the cross section of tested specimens. Moreover, different types of inclusions in as-received X70 steel were found. However, only inclusions which were hard, brittle and incoherent with the metal matrix, such as manganese sulfide and carbonitride precipitates, were recognized to be harmful to HIC phenomenon. Moreover, HIC cracks propagate dominantly in transgraular manner through differently oriented grains with no clear preferential trend. Moreover, a different type of HIC crack with about 15-20 degrees of deviation from the rolling direction was found and studied by EBSD technique and role of micro-texture parameters on HIC was discussed.


inclusion crystallographic texture electron backscatter diffraction energy dispersive spectroscopy kernel average misorientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Oriani and P. H. Josephic, Acta Metall. 27, 997 (1979).CrossRefGoogle Scholar
  2. 2.
    C. A. Zapffe and C. E. Sims, T. Am. I. Min. Met. Eng. 145, 225 (1941).Google Scholar
  3. 3.
    A. S. Tetelman and W. D. Robertson, T. Am. I. Min. Met. Eng. 224, 775 (1962).Google Scholar
  4. 4.
    M. A. Mohtadi-Bonab, J. A. Szpunar, and S. S. Razavi-tousi, Eng. Fail. Anal. 33, 163 (2013).CrossRefGoogle Scholar
  5. 5.
    M. A. Mohtadi-Bonab, J. A. Szpunar, L. Collins, and R. Stankiewich, Int. J. Hydrogen Energ. 39, 6076 (2014).CrossRefGoogle Scholar
  6. 6.
    M. A. Mohtadi-Bonab, J. A. Szpunar, and S. S. Razavi-tousi, Int. J. Hydrogen Energ. 38, 13831 (2013).CrossRefGoogle Scholar
  7. 7.
    X. B. Shi, W. Yan, W. Wang, L. Y. Zhao, Y. Y. Shan, and K. Yang, J. Iron Steel Res. Int. 22, 937 (2015).CrossRefGoogle Scholar
  8. 8.
    Z. Y. Liu, X. Z. Wang, C. W. Du, J. K. Li, and X. G. Li, Mat. Sci. Eng. A 658, 348 (2016).CrossRefGoogle Scholar
  9. 9.
    M. A. Mohtadi-Bonab, M. Eskandari, K. M. M. Rahman, R. ouellet, and J. A. Szpunar, Int. J. Hydrogen Energ. 23, 4185 (2016).CrossRefGoogle Scholar
  10. 10.
    M. A. Mohtadi-Bonab, R. Karimdadashi, M. Eskandari, and J. A. Szpunar, J. Mater. Eng. Perform. 25, 1781 (2016).CrossRefGoogle Scholar
  11. 11.
    T. Hara, H. Asahi, and H. Ogawa, Corros. Sci. 60, 1113 (2004).CrossRefGoogle Scholar
  12. 12.
    W. K. Kim, S. U. Koh, B. Y. Yang, and K. Y. Kim, Corros. Sci. 50, 3336 (2008).CrossRefGoogle Scholar
  13. 13.
    D. Hejazi, A. J. Haq, N. Yazdipour, D. P. Dunne, A. Calka, F. Barbaro, et al. Mat. Sci. Eng. A 551, 40 (2012).CrossRefGoogle Scholar
  14. 14.
    Z. Y. Liu, X. G. Li, C. W. Du, L. Lu, Y. R. Zhang, and Y. F. Cheng, Corros. Sci. 51, 895 (2009).CrossRefGoogle Scholar
  15. 15.
    E. M. Moore and J. J. Warga, Mater. Performance 15, 17 (1976).Google Scholar
  16. 16.
    V. Venegas, F. Caleyo, T. Baudin, J. H. Espina-Hernández, and J. M. Hallen, Corros. Sci. 53, 4204 (2011).CrossRefGoogle Scholar
  17. 17.
    M. A. Mohtadi-Bonab, M. Eskandari, and J. A. Szpunar, Mat. Sci. Eng. A 620, 97 (2015).CrossRefGoogle Scholar
  18. 18.
    M. A. Mohtadi-Bonab, J. A. Szpunar, R. Basu, and M. Eskandari, Int. J. Hydrogen Energ. 40, 1096 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Tamehiro, T. Takeda, S. Matsuda, K. Yamamoto, and N. Okumura, T. Iron Steel I. Jpn. 25, 982 (1985).CrossRefGoogle Scholar
  20. 20.
    M. A. Al-Anezi and S. Rao, J. Fail. Anal. Preven. 11, 385 (2011).CrossRefGoogle Scholar
  21. 21.
    J. Moon, C. Park, and S. J. Kim, Met. Mater. Int. 18, 613 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Moon, S. J. Kim, and C. Lee, Met. Mater. Int. 19, 45 (2013).CrossRefGoogle Scholar
  23. 23.
    T. Y. Jin, Z. Y. Liu, and Y. F. Cheng, Int. J. Hydrogen Energ. 35, 8014 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Maciejewski, J. Fail. Anal. Preven. 15, 169 (2015).CrossRefGoogle Scholar
  25. 25.
    R. Badji, T. Chauveau, and B. Bacroix, Mat. Sci. Eng. A 575, 94 (2013).CrossRefGoogle Scholar
  26. 26.
    V. Venegas, F. Caleyo, J. M. Hallen, T. Baudin, and R. Penelle, Metall. Mater. Trans. A 38, 1022 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Iino, Metall. Mater. Trans. A 9, 1581 (1978).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • M. A. Mohtadi-Bonab
    • 1
    Email author
  • M. Eskandari
    • 2
  • R. Karimdadashi
    • 1
  • J. A. Szpunar
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of BonabBonabIran
  2. 2.Department of Materials Science & Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran
  3. 3.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatchewanCanada

Personalised recommendations