Metals and Materials International

, Volume 23, Issue 3, pp 473–480 | Cite as

Depth sensing indentation analyses of hypereutectic Al-10Ni — XSc (X = 0, 1, 2) alloys



Depth sensing indentation analyses of hypereutectic Al-10Ni alloys with different amounts of Sc content were performed to determine the values of elastic modulus, dynamic microhardness, creep rate and elastic recovery rate. Microstructural characterizations were performed by using scanning electron microscopy (SEM), SEM mapping and an X-ray diffractometer. The results revealed that the addition of Sc refined the intermetallic phases of Al and Ni, and led to the formation of two additional intermetallic phases as well, namely Al3Sc and metastable Al9Ni2. The Al-Ni alloys investigated in this work exhibited elastoplastic behavior at room temperature and the addition of Sc influences their elastic-plastic responses to the indentation process. In addition, dynamic microhardness of them exhibited a load-dependent character called the indentation size effect. The addition of Sc considerably improved the values of dynamic microharddness, elastic modulus and elastic recovery rate. It also resulted in a lower creep displacement rate.


microstructure indentation creep mechanical properties dynamic microhardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Fahmy and A. N. Ragai, J. Appl. Phys. 41, 5108 (1970).CrossRefGoogle Scholar
  2. 2.
    M. M. Haque and M. A. Maleque, J. Mater. Process. Tech. 77, 122 (1998).CrossRefGoogle Scholar
  3. 3.
    M. Murayama, K. Hono, M. Saga, and M. Kikushi, Mat. Sci. Eng. A 250, 127 (1998).CrossRefGoogle Scholar
  4. 4.
    Y. H. Kim, A. Unoue, and T. Matsumoto, Mater. T. JIM 31, 747 (1990).CrossRefGoogle Scholar
  5. 5.
    T. Zhang, A. Unoue, and T. Matsumoto, Mater. T. JIM 32, 1005 (1991).CrossRefGoogle Scholar
  6. 6.
    Z. C. Zhong, X. Y. Jiang, and A. L. Greer, Mat. Sci. Eng. A 226-228, 531 (1997).CrossRefGoogle Scholar
  7. 7.
    F. J. Dom, Aluminium 70, 575 (1994).Google Scholar
  8. 8.
    D. P. Pope and S. S. Ezz, Int. Mater. Rev. 29, 136 (1984).CrossRefGoogle Scholar
  9. 9.
    D. Srinivasan and K. Chattopadhyay, Mat. Sci. Eng. A 375-377, 1228 (2004).CrossRefGoogle Scholar
  10. 10.
    B. J. McKay, P. Cizek, P. Schumacher, and K. A. Q. O’Reilly, Mat. Sci. Eng. A 304-306, 240 (2001).CrossRefGoogle Scholar
  11. 11.
    K. L. Sahoo, M. Wollgarten, J. Haug, and J. Banhart, Acta Mater. 53, 3861 (2005).CrossRefGoogle Scholar
  12. 12.
    V. G. Davydov, T. D. Rostova, V. V. Zakharov, Y. A. Filatov, and V. I. Yelagin, Mat. Sci. Eng. A 280, 30 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Zaki, JOM 55, 35 (2003).Google Scholar
  14. 14.
    K. Venkateswarlu, L. C. Pathak, A. K. Ray, G. Das, P. K. Verma, M. Kumar, et al. Mat. Sci. Eng. A 383, 374 (2004).CrossRefGoogle Scholar
  15. 15.
    A. F. Norman and R. S. McEwen, Acta Mater. 46, 5715 (1998).CrossRefGoogle Scholar
  16. 16.
    J. Z. Dang, Y. F. Huang, and J. Cheng, T. Nonferr. Metal. Soc. 19, 540 (2009).CrossRefGoogle Scholar
  17. 17.
    G. Gonzalez, L. G. A. Rodriguez, S. A. Jimenez, W. Saikaly, and A. Charai, Mater. Charact. 59, 1607 (2008).CrossRefGoogle Scholar
  18. 18.
    P. Nandi, S. Suwas, S. Kumar, and K. Chattopadhyay, Metall. Mater. Trans. A 44, 2591 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Urrutia, S. Tumminello, D. G. Lamas, and S. Sommadossi, Procedia Mater. Sci. 8, 1150 (2015).CrossRefGoogle Scholar
  20. 20.
    Y. Castrillejo, A. Vega, M. Vega, P. Hernández, J. A. Rodriguez, and E. Barrado, Electrochim. Acta 118, 58 (2014).CrossRefGoogle Scholar
  21. 21.
    U. Kolemen, J. Alloy. Compd. 425, 429 (2006).Google Scholar
  22. 22.
    O. Sahin, O. Uzun, S. L. Malgorzata, H. Göçmez, and U. Kolemen, J. Eur. Ceram. Soc. 28, 1235 (2008).CrossRefGoogle Scholar
  23. 23.
    M. F. Kiliçaslan, O. Uzun, F. Yilmaz, and S. Çaglar, Metall. Mater. Trans. B 45, 1865 (2014).CrossRefGoogle Scholar
  24. 24.
    O. Uzun, F. Yilmaz, U. Kolemen, and N. Basman, J. Alloy. Compd. 509, 21 (2011).CrossRefGoogle Scholar
  25. 25.
    S. Ruben, Handbook of the Elements, pp. 2,58,80, Open Court Pub. Co., Illionis, USA (1998).Google Scholar
  26. 26.
    U. Kolemen, O. Uzun, M. A. Aksan, N. Güçlü, and E. Yakinci, J. Alloy. Compd. 415, 294 (2006).CrossRefGoogle Scholar
  27. 27.
    S. J. Hong and C. Suryanarayana, Metall. Mater. Trans. A 36, 715 (2005).CrossRefGoogle Scholar
  28. 28.
    M. F. Kilicaslan, J. Alloy. Compd. 606, 86 (2014).CrossRefGoogle Scholar
  29. 29.
    W. G. Zhang, Y. C. Ye, L. J. He, P. J. Li, X. Feng, and L. S. Novikov, Mat. Sci. Eng. A. 578, 35 (2013).CrossRefGoogle Scholar
  30. 30.
    Y. L. Zhou and M. Niinomi, Mater. T. JIM 50, 368 (2009).CrossRefGoogle Scholar
  31. 31.
    J. Royset and N. Ryum, Int. Mater. Rev. 50, 19 (2005).CrossRefGoogle Scholar
  32. 32.
    J. Wang, Y. Du, S. L. Shang, Z. K. Liu, and Y. W. Li, J. Min. Metall. Sect. B-Metall. 50, 37 (2014).CrossRefGoogle Scholar
  33. 33.
    I. Alhayek and M. S. Gaith, Jordan J. Mech. Indust. Eng. 4, 55 (2010).Google Scholar
  34. 34.
    F. Xu, Y. H. Ding, X. H. Deng, P. Zhnag, and Z. L. Long, Physica B 450, 84 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTurkey
  2. 2.Department of Physics, Faculty of SciencesÇankırı Karatekin UniversityCankiriTurkey

Personalised recommendations