Metals and Materials International

, Volume 23, Issue 3, pp 459–464 | Cite as

On the rule-of-mixtures of the hardening parameters in TWIP-cored three-layer steel sheet

  • Jung Gi Kim
  • Seung Mi Baek
  • Won Tae Cho
  • Tae Jin Song
  • Kwang-Geun Chin
  • Sunghak Lee
  • Hyoung Seop Kim


Although twinning-induced plasticity (TWIP) steels have high tensile strength with high strain hardening and large uniform elongation due to the formation of deformation twins during plastic deformation, sheet formabilities of TWIP steels are relatively poor. In this study, to overcome this problem, TWIP-cored three-layer architectured steel sheets are produced using cladding with low carbon steel sheaths. For an optimum design of layer architectured materials, strain hardening exponent n and strain rate sensitivity m of the layer sheets are theoretically and experimentally investigated. The forced-based rule-of-mixtures well reproduces the experimental values of the equivalent n and m. Contrary to the conventional rule-of-mixtures, the equivalent n and m of the TWIP-cored mild steel-sheath layered sheets are governed not only by volume fractions and n and m of parent materials but also by the strength of strong layer.


TWIP steel composite tensile test rule-of-mixtures mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid St. M. 15, 141 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Mat. Sci. Eng. A 483-484, 184 (2008).CrossRefGoogle Scholar
  3. 3.
    J.-E. Jin and Y.-K. Lee, Mat. Sci. Eng. A 527, 157 (2009).CrossRefGoogle Scholar
  4. 4.
    J.-K. Kim, L. Chen, H.-S. Kim, S.-K. Kim, Y. Estrin, and B. C. De Cooman, Metall. Mater. Trans. A 40, 3147 (2009).Google Scholar
  5. 5.
    B.-H. Song, J. Kim, I. Choi, and Y.-K. Lee, Korean J. Met. Mater. 52, 1 (2014).CrossRefGoogle Scholar
  6. 6.
    J. E. Jung, J. Park, J.-S. Kim, J. B. Jeon, S. K. Kim, and Y. W. Chang, Met. Mater. Int. 20, 27 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P. J. Jacques, Acta Mater. 58, 2464 (2010).CrossRefGoogle Scholar
  8. 8.
    K. Chung, K. Ahn, D.-H. Yoo, K.-H. Chung, M.-H. Seo, and S.-H. Park, Int. J. Plasticity 27, 52 (2011).CrossRefGoogle Scholar
  9. 9.
    K.-G. Chin, C.-Y. Kang, S. Y. Shin, S. Hong, S. Lee, N. J. Kim, et al. Mat. Sci. Eng. A 528, 2922 (2011).CrossRefGoogle Scholar
  10. 10.
    S.-H. Choi, K.-H. Kim, K. H. Oh, and D. N. Lee, Mat. Sci. Eng. A 222, 158 (1997).CrossRefGoogle Scholar
  11. 11.
    D. N. Lee and Y. K. Kim, J. Mater. Sci. 23, 558 (1988).CrossRefGoogle Scholar
  12. 12.
    S. L. Semiatin and H. R. Piehler, Metall. Trans. A 10, 85 (1979).CrossRefGoogle Scholar
  13. 13.
    R. Narayanasamy, R. Ponalagusamy, and S. Raghuraman, Mater. Design 29, 884 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Hong, S. Y. Shin, J. Lee, D.-H. Ahn, H. S. Kim, S. Lee, et al. Metall. Mater. Trans. A 45, 633 (2014).CrossRefGoogle Scholar
  15. 15.
    K. R. Gilmour, A. G. Leacock, and M. T. J. Ashbridge, J. Mater. Process. Tech. 152, 116 (2004).CrossRefGoogle Scholar
  16. 16.
    D. A. Burford, K. Narasimhan, and R. H. Wagoner, Metall. Trans. A 22, 1775 (1991).CrossRefGoogle Scholar
  17. 17.
    D.-K. Leu, Int. J. Mach. Tool Manu. 37, 201 (1997).CrossRefGoogle Scholar
  18. 18.
    J. Signorelli, M. Bertinetti, and P. Turner, Int. J. Plasticity 25, 1 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Li and A. Chandra, J. Mater. Process. Tech. 96, 133 (1999).Google Scholar
  20. 20.
    L. S. Toth, A. Molinari, and O. Bouaziz, Mat. Sci. Eng. A 524, 186 (2009).CrossRefGoogle Scholar
  21. 21.
    D. N. Lee and Y. K. Kim, J. Mater. Sci. 23, 1436 (1988).CrossRefGoogle Scholar
  22. 22.
    J.-S. Kim, J. Park, K. S. Lee, S. Lee, and Y. W. Chang, Met. Mater. Int. 22, 771 (2016).CrossRefGoogle Scholar
  23. 23.
    J. I. Yoon, J. G. Kim, J. M. Jung, D. J. Lee, H. J. Jeong, H. S. Kim, et al. Korean J. Met. Mater. 54, 231 (2016).CrossRefGoogle Scholar
  24. 24.
    M. F. Shi and D. J. Meuleman, J. Mater. Eng. Perform. 4, 321 (1995).CrossRefGoogle Scholar
  25. 25.
    D. W. Wilson, Mater. Technol. 7, 282 (1980).Google Scholar
  26. 26.
    E.-Y. Kim, S. I. Kim, and S.-H. Choi, Korean J. Met. Mater. 54, 808 (2016).CrossRefGoogle Scholar
  27. 27.
    Y. F. Shen, L. Lu, M. Dao, and S. Suresh, Scripta Mater. 55, 319 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Bintu, G. Vincze, C. R. Picu, A. B. Lopes, J. J. Gracio, and F. Barlat, Mat. Sci. Eng. A 629, 54 (2015).CrossRefGoogle Scholar
  29. 29.
    S. Ochiai and Y. Murakami, J. Mater. Sci. 15, 1790 (1980).CrossRefGoogle Scholar
  30. 30.
    S. Ochiai and Y. Murakami, J. Mater. Sci. 14, 1187 (1979).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jung Gi Kim
    • 1
  • Seung Mi Baek
    • 1
  • Won Tae Cho
    • 2
  • Tae Jin Song
    • 2
  • Kwang-Geun Chin
    • 2
  • Sunghak Lee
    • 1
  • Hyoung Seop Kim
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.HIMASS Research Project Team, Technical Research LaboratoriesPOSCOGwangyangRepublic of Korea
  3. 3.Center for High Entropy AlloysPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations