Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 488–498 | Cite as

Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain rate test

  • Yan Liu
  • Shawei Tang
  • Guangyi Liu
  • Yue Sun
  • Jin Hu
Article

Abstract

In this study, a welded Ti-6Al-4V alloy was treated by means of local rapid induction heating in order to relax the residual stress existed in the weldment. The welded samples were heat treated at the different temperatures. The stress corrosion cracking behavior and electrochemical characterization of the as-welded samples before and after the post weld heat treatment as a function of residual stress were investigated. Electrochemical impedance spectroscopy measurements of the samples under slow strain rate test were performed in a LiCl-methanol solution. The results demonstrated that the residual stress in the as-welded sample was dramatically reduced after the post weld heat treatment, and the residual stress decreased with the increase in the heat treatment temperature. The stress corrosion cracking susceptibility and electrochemical activity of the as-welded sample were significantly reduced after the heat treatment due to the relaxation of the residual stress, which gradually decreased with the decreasing value of the residual stress distributed in the heat treated samples.

Keywords

alloys welding residual stress scanning electron microscopy (SEM) stress corrosion cracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. K. Kim, J. H. Baek, B. K. Choi, and Y. H. Jeong, Met. Mater. Int. 13, 47 (2007).CrossRefGoogle Scholar
  2. 2.
    H. K. Kim and J. W. Jang, Met. Mater. Int. 10, 439 (2004).CrossRefGoogle Scholar
  3. 3.
    S. E. Kim, J. H. Son, Y. T. Hyun, H. W. Jeong, Y. T. Lee, J. S. Song, et al. Met. Mater. Int. 13, 151 (2007).CrossRefGoogle Scholar
  4. 4.
    J. M. C. Moreno, M. Popa, S. Ivanescu, C. Vasilescu, S. I. Drob, E. I. Neacsu, et al. Met. Mater. Int. 20, 177 (2014).CrossRefGoogle Scholar
  5. 5.
    B. Tang, P. Q. Wu, A. L. Fan, L. Qin, H. J. Hu, and J. P. Celis, Adv. Eng. Mater. 7, 232 (2005).CrossRefGoogle Scholar
  6. 6.
    S. A. Fadl-allah and Q. Mohsen, Appl. Surf. Sci. 256, 5849 (2010).CrossRefGoogle Scholar
  7. 7.
    D. Mareci, R. Chelariu, A. Cailean, F. Brinza, G. Bolat, and D. M. Gordin, T. Nonferr. Metal. Soc. 25, 345 (2015).CrossRefGoogle Scholar
  8. 8.
    A. L. Pilchak, A. H. Young, and J. C. Williams, Corros. Sci. 52, 3287 (2010).CrossRefGoogle Scholar
  9. 9.
    M. D. Pustode, V. S. Raja, and N. Paulose, Corros. Sci. 82, 191 (2014).CrossRefGoogle Scholar
  10. 10.
    S. P. Trasatti and E. Sivieri, Mater. Chem. Phys. 83, 367 (2004).CrossRefGoogle Scholar
  11. 11.
    W. T. Tsai, C. L. Lin, and S. J. Pan, Corros. Sci. 76, 494 (2013).CrossRefGoogle Scholar
  12. 12.
    X. L. Gao, L. J. Zhang, J. Liu, and J. X. Zhang, Mat. Sci. Eng. A 559, 14 (2013).CrossRefGoogle Scholar
  13. 13.
    H. Liu, K. Nakata, and N. Yamamoto, J. Mater. Sci. 47, 1460 (2012).CrossRefGoogle Scholar
  14. 14.
    P. Q. Xu, L. Li, and C. Zhang, Mater. Charact. 87, 179 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Heidarbeigy, F. Karimzadeh, and A. Saatchi, Mater. Lett. 62, 1575 (2008).CrossRefGoogle Scholar
  16. 16.
    F. Karimzadeh, M. Heidarbeigy, and A. Saatchi, J. Mater. Process. Tech. 206, 388 (2008).CrossRefGoogle Scholar
  17. 17.
    Z. Han, H. Zhao, X. Y. Chen, and H. C. Lin, Mat. Sci. Eng. A 277, 38 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. Liu, S. W. Tang, G. Y. Liu, Y. Sun, and J. Hu, Int. J. Electrochem. Sc. 11, 8530 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Ghosh, V. P. S. Rana, V. Kain, V. Mittal, and S. K. Baveja, Mater. Design 32, 3823 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Mochizuki, Nucl. Eng. Des. 237, 107 (2007).CrossRefGoogle Scholar
  21. 21.
    M. J. Hu and H. J. Liu, T. Nonferr. Metal. Soc. 19, 324 (2009).CrossRefGoogle Scholar
  22. 22.
    C. C. Huang, Y. C. Pan, and T. H. Chuang, J. Mater. Eng. Perform. 6, 61 (1997).Google Scholar
  23. 23.
    C. C. Huang and T. H. Chuang, Mater. Manuf. Process. 12, 779 (1997).CrossRefGoogle Scholar
  24. 24.
    J. Komotori, M. Shimizu, Y. Misaka, and K. Kawasaki, Int. J. Fatigue 23, S225 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Dewidar, Mater. Design 31, 3964 (2010).CrossRefGoogle Scholar
  26. 26.
    P. E. Markovskya and S. L. Semiatinb, J. Mater. Process. Tech. 210, 518 (2010).Google Scholar
  27. 27.
    S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, and D. R. Barker, Metall. Mater. Trans. A. 34, 2377 (2003).CrossRefGoogle Scholar
  28. 28.
    P. E. Markovskya and S. L. Semiatinb, Mat. Sci. Eng. A 528, 3079 (2011).CrossRefGoogle Scholar
  29. 29.
    M. Atapour, M. H. Fathi, and M. Shamanian, Mater. Corros. 63, 134 (2012).CrossRefGoogle Scholar
  30. 30.
    K. Hagihara, M. Okubo, M. Yamasaki, and T. Nakano, Corros. Sci. (2016).Google Scholar
  31. 31.
    Y. Wang, W. Zhao, H. Ai, X. Zhou, and T. Zhang, Corros. Sci. 53, 2761 (2011).CrossRefGoogle Scholar
  32. 32.
    A. A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Corros. Sci. 61, 111 (2012).CrossRefGoogle Scholar
  33. 33.
    M. Sun, K. Xiao, C. Dong, X. Li, and P. Zhong, Corros. Sci. 89, 137 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Sunada and N. Nunomura, Arch. Metall. Mater. 58, 505 (2013).CrossRefGoogle Scholar
  35. 35.
    C. S. Brossia, E. Gileadi, and R. G. Kelly, Corros. Sci. 37, 1455 (1995).CrossRefGoogle Scholar
  36. 36.
    T. Kawai, H. Nishisara, and K. Aramaki, Corros. Sci. 37, 823 (1995).CrossRefGoogle Scholar
  37. 37.
    T. Kawai, H. Nishisara, and K. Aramaki, Corros. Sci. 38, 225 (1996).CrossRefGoogle Scholar
  38. 38.
    C. S. Brossia and R. G. Kelly, Electrochim. Acta 41, 2579 (1996).CrossRefGoogle Scholar
  39. 39.
    T. Kawai, H. Nishihara, and K. Aramaki, J. Electrochem. Soc. 143, 3866 (1996).CrossRefGoogle Scholar
  40. 40.
    A. S. H. Kabir, X. J. Cao, J. Gholipour, P. Wanjara, J. Cuddy, A. Birur, et al. Metall. Mater. Trans. A 43, 4171 (2012).CrossRefGoogle Scholar
  41. 41.
    G. Thomas, V. Ramachandra, and R. Ganeshan, J. Mater. Sci. 28, 4892 (1993).CrossRefGoogle Scholar
  42. 42.
    G. Thomas, V. Ramachandra, M. J. Nair, K. V. Nagarajan, and R. Vasudevan, Weld. J. 1, 15 (1992).Google Scholar
  43. 43.
    D. Jeong, W. Jung, Y. Kim, M. Goto, and S. Kim, Met. Mater. Int. 5, 785 (2015).CrossRefGoogle Scholar
  44. 44.
    D. J. Kim, H. P. Kim, S. S. Hwang, J. S. Kim, and J. Park, Met. Mater. Int. 16, 259 (2010).CrossRefGoogle Scholar
  45. 45.
    M. S. Han, S. Ko, S. H. Kim, S. K. Jang, and S. J. Kim, Met. Mater. Int. 14, 203 (2008).CrossRefGoogle Scholar
  46. 46.
    C. S. Lee, Y. Choi, and I. G. Park, Met. Mater. Int. 8, 191 (2002).CrossRefGoogle Scholar
  47. 47.
    J. O. Yin, Y. S. Wu, J. Lu, B. F. Ding, L. Zhang, and B. Cao, Rare. Metal. Mat. Eng. 6, 436 (2003).Google Scholar
  48. 48.
    C. J. O. Alonso1, J. G. G. Rodriguez, J. U. Chavarin, and J. G. C. Nava, Int. J. Electrochem. Sc. 10, 5249 (2015).Google Scholar
  49. 49.
    H. Zhang, X. D. Wang, R. L. Jia, J. Hou, and W. M. Guo, Int. J. Electrochem. Sc. 8, 1262 (2013).Google Scholar
  50. 50.
    M. D. Pustode and V. S. Raja, Metall. Mater. Trans. A 46, 6081 (2015).CrossRefGoogle Scholar
  51. 51.
    Y. S. Wu, Y. L. Jiang, H. Chu, Z. Y. Ding, and B. F. Ding, J. Univ. Sci. Technol. B 1, 40 (2003).Google Scholar
  52. 52.
    J. E. G. Gonzalez and J. C. M. Rosca, J. Electroanal. Chem. 471, 109 (1999).CrossRefGoogle Scholar
  53. 53.
    C. H. Zhang, W. Song, F. B. Li, X. Zhao, Y. M. Wang, and G. Z. Xiao, Int. J. Electrochem. Sc. 10, 9167 (2015).Google Scholar
  54. 54.
    R. Ittah, I. Malka, I. Bar, and D. Itzhak, Int. J. Electrochem. Sc. 10, 1326 (2015).Google Scholar
  55. 55.
    E. M. Gutman, Mechanochemistry and Corrosion Prevention of Metals, p. 7, Science Publication, Peking (1989).Google Scholar
  56. 56.
    L. Y. Xu and Y. F. Cheng, Corros. Sci. 59, 103 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yan Liu
    • 1
  • Shawei Tang
    • 1
  • Guangyi Liu
    • 1
    • 2
  • Yue Sun
    • 1
  • Jin Hu
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.State Key Laboratory for Marine Corrosion and ProtectionLuoyang Ship Material Research Institute (LSMRI)QingdaoChina

Personalised recommendations