Skip to main content
Log in

Discontinuous precipitation at the deformation band in copper alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Cu-Ni-Si alloy is known as a precipitation hardening alloy, where the Ni2Si intermetallic compound is precipitated in the matrix during aging. There are two types of precipitation of Ni2Si: continuous and discontinuous cellular. The discontinuous cellular precipitation is generally initiated at interfaces especially grain boundaries in the matrix. To observe the grain boundary effect on the discontinuous precipitation, a large-grained Cu-Ni-Si-Ti alloy was intentionally fabricated by unidirectional solidification and plastically deformed by groove rolling. While discontinuous cellular precipitation has been generally known to occur only at the high angled grain boundaries in the alloys, we found that it was also generated inside the grains, at the deformation bands formed by plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Lockyer and F. W. Noble, J. Mater. Sci. 29, 218 (1994).

    Article  Google Scholar 

  2. Q. Lei, Z. Li, M. P. Wang, L. Zhang, Z. Xiao, and Y. L. Jia, Mat. Sci. Eng. A 527, 6728 (2010).

    Article  Google Scholar 

  3. V. C. Srivastava, A. Schneider, V. Uhlenwinkel, S. N. Ojha, and K. J. Bauckhage, J. Mater. Process. Tech. 147, 174 (2004).

    Article  Google Scholar 

  4. S. Z. Han, J. Lee, M. Goto, S. H. Lim, J. H. Ahn, K. Kim, et al. Phil. Mag. Lett. 96, 196 (2016).

    Article  Google Scholar 

  5. S. Z. Han, J. Kang, S. D. Kim, S. Y. Choi, H. G. Kim, B. Han, et al. Sci. Rep. 5, 15050 (2015).

    Article  Google Scholar 

  6. M. Goto, S. Z. Han, S. H. Lim, J. Kitamura, T. Fujimura, J. Lee, et al. Int. J. Fatigue 87, 15 (2016).

    Article  Google Scholar 

  7. S. Z. Han, J. H. Gu, J. H. Lee, Z. P. Que, J. H. Shin, S. S. Kim, et al. Met. Mater. Int. 19, 637 (2013).

    Article  Google Scholar 

  8. E. Lee, K. Euh, S. Z. Han, S. Lim, J. Lee, and S. Kim, Met. Mater. Int. 19, 183 (2013).

    Article  Google Scholar 

  9. H. G. Kim, T. W. Lee, S. M. Kim, S. Z. Han, K. Euh, S. H. Lim, et al. Met. Mater. Int. 19, 61 (2013).

    Article  Google Scholar 

  10. S. Z. Han, S. H. Lim, S. Kim, J. Lee, M. Goto, K. H. Kim, et al. Sci. Rep. 6, 30907 (2016).

    Article  Google Scholar 

  11. I. C. Jung, Y. K. Kim, T. H. Cho, S. H. Oh, T. E. Kim, D. H. Kim, et al. Met. Mater. Int. 20, 99 (2014).

    Article  Google Scholar 

  12. S. Liu, C. Li, Y. Deng, X. Zhang, and Q. Zhong, Met. Mater. Int. 20, 195 (2014).

    Article  Google Scholar 

  13. J. Tian, K. D. Woo, K. J. Lee, and Y. Chen, Korean J. Met. Mater. 52, 101 (2014).

    Article  Google Scholar 

  14. J. Lee, M. Lee, H. Do, S. Kim, and N. Kang, Korean J. Met. Mater. 52, 113 (2014).

    Article  Google Scholar 

  15. R. D. Knutsen, C. I. Lang, and J. A. Basson, Acta Mater. 52, 2407 (2004).

    Article  Google Scholar 

  16. E. G. Lee, S. Z. Han, K. Euh, S. H. Lim, and S. S. Kim, Met. Mater. Int. 17, 569 (2011).

    Article  Google Scholar 

  17. S. Z. Han, K. Euh, S. H. Lim, and S. S. Kim, J. Jpn. Res. Inst. Adv. Copper-Based Mater. Technol. 49, 176 (2010).

    Google Scholar 

  18. M. Talach-Dumnaska, P. Zieba, A. Pawlowski, J. Wojewoda, and W. Gust, Mater. Chem. Phys. 80, 476 (2003).

    Article  Google Scholar 

  19. A. Heckl, S. Cenanovic, M. Göken, and R. F. Singer, Metall. Mater. Trans. A 43, 10 (2012).

    Article  Google Scholar 

  20. F. Findik, J. Mater. Sci. Lett. 17, 79 (1998).

    Article  Google Scholar 

  21. R. Monzen and C. Watanabe, Mat. Sci. Eng. A 483, 117 (2008).

    Article  Google Scholar 

  22. R. K. Ray and S. C. Narayanan, Metall. Mater. Trans. A 13, 565 (1982).

    Article  Google Scholar 

  23. J. D. Verhoeven, J. H. Lee, F. C. Labbs, and L. L. Jones, J. Phase Equilib. 12, 15 (1991).

    Article  Google Scholar 

  24. K. Harada, Y. Hosono, S. Saitoh, and Y. Yamashita, Jpn. J. Appl. Phys 39, 3117 (2000).

    Article  Google Scholar 

  25. M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, Y. Takanashi, et al. J. Cryst. Growth 304, 196 (2007).

    Article  Google Scholar 

  26. S. M. Seo, I. S. Kim, J. H. Lee, C. Y. Jo, H. Miyahara, and K. Ogi, Met. Mater. Int. 15, 391 (2009).

    Article  Google Scholar 

  27. H. P. Ng, C. J. Bettles, and B. C. Muddle, J. Alloy. Compd. 509, 1582 (2011).

    Article  Google Scholar 

  28. Z. J. Wangab and T. J. Konnob, Phil. Mag. 93, 949 (2013).

    Article  Google Scholar 

  29. T. H. Chuang, R. A. Fournelle, W. Gust, and B. Predel, Scripta Metall. Mater. 20, 25 (1986).

    Article  Google Scholar 

  30. I. Manna and S. K. Pabi, J. Mater. Sci. Lett. 9, 1226 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jehyun Lee or Kwangho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S.Z., Ahn, J.H., You, Y.S. et al. Discontinuous precipitation at the deformation band in copper alloy. Met. Mater. Int. 24, 23–27 (2018). https://doi.org/10.1007/s12540-017-6626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6626-8

Keywords

Navigation