Metals and Materials International

, Volume 23, Issue 3, pp 582–590 | Cite as

Researches on a novel severe plastic deformation method combining direct extrusion and shearings for AZ61 magnesium alloy based on numerical simulation and experiments

  • Hongjun HuEmail author
  • Zhao Sun
  • zhongwen Ou
  • xiaoqing Wang


A new severe plastic deformation method called extrusion-shearing shorten for “ES” has been developed to fabricate the ultra-fine grained AZ61 magnesium alloys. The correlation theories of ES process have been studied which includes cumulative strain and Zener-Hollomon parameter etc. Simulations of ES process for wrought AZ61 magnesium alloy have been performed using three-dimensional finite element method. ES dies with one step shearing and two step shearings have been designed, manufactured and installed onto thermo-mechanical simulator and industrial horizontal extruder, respectively. Microstructures evolution has been observed and analysed. The influences of the ES processes on the grain refinements of AZ61magniesium alloys during multistage processes have been investigated. Based on the experimental, simulation and theoretical results, ES process could increase the cumulative strains enormously and refine grain sizes by direct extrusion and additional shearings. ES process can produce the serve plastic deformation and improve the volume fraction of dynamic recrystallization. Continuous dynamic recrystallizaion is the main reason for grain refinements during ES process.


metals severe plastic deformation grain refinement optical microscopy extrusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Q. Chen, Z. Zhao, Z. Zhao, C. Hu, and D. Shu, J. Alloy. Compd. 509, 7303 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Song, H. Zhao, L. Chai, N. Guo, H. Pan, and R. Xin, Met. Mater. Int. 22, 887 (2016).CrossRefGoogle Scholar
  3. 3.
    R. G. Guan, Z. Y. Zhao, C. Lian, T. Cui, and C. S. Lee, Met. Mater. Int. 19, 33 (2013).CrossRefGoogle Scholar
  4. 4.
    X. Wang, X. Gong, and K. Chou, P. I. Mech Eng B-J. Eng. 1, 1(2016).CrossRefGoogle Scholar
  5. 5.
    Z. Zhao, Q. Chen, H. Chao, and S. Huang, Mater. Design 31, 1906 (2010).CrossRefGoogle Scholar
  6. 6.
    R. B. Figueiredo, P. R. Cetlin, and T. G. Langdon, Acta Mater. 55, 4769 (2007).CrossRefGoogle Scholar
  7. 7.
    K. Matsuyama, Y. Miyahara, Z. Horitaand, and T. G. Langdon, Acta Mater. 51, 3073 (2003).CrossRefGoogle Scholar
  8. 8.
    G. Liu, J. Zhou, and J. Duszczyk, J. Manuf. Sci. Eng. 129, 607 (2007).CrossRefGoogle Scholar
  9. 9.
    Q. Chen, Z. Zhao, G. Chen, and B. Wang, J. Alloy. Compd. 632,190 (2015).CrossRefGoogle Scholar
  10. 10.
    Q. Chen, B. Yuan, J. Lin, X. Xia, Z. Zhao, and D. Shu, J. Alloy. Compd. 584, 63 (2014).CrossRefGoogle Scholar
  11. 11.
    Q. Chen, D. Shu, C. Hu, Z. Zhao, and B. Yuan, Mat. Sci. Eng. A 541, 98 (2012).CrossRefGoogle Scholar
  12. 12.
    Q. Chen, B. Yuan, G. Zhao, D. Shu, C. Hu, Z. Zhao, et al. Mat. Sci. Eng. A 537, 25 (2012).CrossRefGoogle Scholar
  13. 13.
    Y.-I. Choi, K. Kuroda, and M. Okido, Met. Mater. Int. 21, 857 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Dharmendra, K. P. Rao, Y. V. R. K. Prasad, N. Hort, and K. U. Kainer, Met. Mater. Int. 21, 134 (2015).CrossRefGoogle Scholar
  15. 15.
    S. H. Park, H. S. Kim, and B. S. You, Met. Mater. Int. 20, 291 (2014).CrossRefGoogle Scholar
  16. 16.
    J. H. Park, H. L. Kim, J. E. Jung, and Y. W. Chang, Met. Mater. Int. 19, 389 (2013).CrossRefGoogle Scholar
  17. 17.
    B. D. Lee, E. J. Kim, U. H. Baek, and J. W. Han, Met. Mater. Int. 19, 135 (2013).CrossRefGoogle Scholar
  18. 18.
    D.-T. Nguyen, Y.-S. Kim, and D.-W. Jung, Met. Mater. Int. 18, 583 (2012).CrossRefGoogle Scholar
  19. 19.
    S. W. Nam, W. T. Kim, D. H. Kim, and T. S. Kim, Met. Mater. Int. 19, 205 (2013).CrossRefGoogle Scholar
  20. 20.
    S. H. Park, H. S. Kim, and B. S. You, Met. Mater. Int. 20, 291 (2014).CrossRefGoogle Scholar
  21. 21.
    Q. Chen, G. Chen, L. Han, N. Hu, F. Han, Z. Zhao, et al. J. Alloy. Compd. 656, 67 (2016).CrossRefGoogle Scholar
  22. 22.
    X. Xia, Q. Chen, Z. Zhao, M. Ma, X. Li, and K. Zhang, J. Alloy. Compd. 623, 62 (2015).Google Scholar
  23. 23.
    H. L. Kim and Y. W. Chang, Met. Mater. Int. 17, 563 (2011).CrossRefGoogle Scholar
  24. 24.
    H. L. Kim and Y. W. Chang, Met. Mater. Int. 17, 721 (2011).CrossRefGoogle Scholar
  25. 25.
    D. Y. Chang, Y. M. Seo, and B. S. You, Met. Mater. Int. 15, 683 (2009).CrossRefGoogle Scholar
  26. 26.
    X. Wang and Y. K. Chou, ASME 2015 International Mechanical Engineering Congress and Exposition (IMECE2015), p. V02AT02A015, ASME, Houston, USA (2015).Google Scholar
  27. 27.
    D. H. Kim, H. K. Lim, Y. K. Kim, J. S. Kyeong, W. T. Kim, and D. H. Kim, Met. Mater. Int. 17, 383 (2011).CrossRefGoogle Scholar
  28. 28.
    K. B. Lee, J. H. Choi, and H. Kwon, Met. Mater. Int. 15, 33 (2009).CrossRefGoogle Scholar
  29. 29.
    X. Wang, X. Gong, and K. Chou, Procedia Manufacturing 1, 287 (2015).CrossRefGoogle Scholar
  30. 30.
    X. Gong, X. Wang, V. Cole, Z. Jones, K. Cooper, and K. Chou, ASME 2015 International Manufacturing Science and Engineering Conference, p. V001T02A061, ASME, Charlotte North Carolina, USA (2015).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hongjun Hu
    • 1
    • 2
    Email author
  • Zhao Sun
    • 1
  • zhongwen Ou
    • 2
  • xiaoqing Wang
    • 3
  1. 1.Materials Science and Engineering CollegeChongqing University of TechnologyChongqingChina
  2. 2.Materials Science and Engineering CollegeSichuan University of Science & EngineeringZigongChina
  3. 3.Department of Mechanical EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations