Metals and Materials International

, Volume 23, Issue 3, pp 465–472 | Cite as

Directionality of residual stress evaluated by instrumented indentation testing using wedge indenter

  • Hee-Jun Ahn
  • Jong-hyoung Kim
  • Huiwen Xu
  • Junsang Lee
  • Ju-Young Kim
  • Young-Cheon Kim
  • Dongil Kwon
Article
  • 144 Downloads

Abstract

In instrumented indentation testing (IIT), residual stress can be evaluated by shift in indentation load-depth curves for stress-free and stressed states. Although the average surface residual stress is able to be evaluated with Vickers indenter, in order to know stress directionality, another indentation tests with two-fold symmetric indenter, for example, Knoop indenter, are needed. As some necessities for evaluating nonequibiaxial residual stress within small indent area, we suggest a novel way to evaluate directionality of residual stress, p, using wedge indenter characterized by two parameters, edge length and inclined angle. We develop wedge-indentation-mechanics model based on predetermined conversion factors which are determined by IITs for various uniaxial stressed states combining with finite element analysis simulations. By utilizing the developed model, directionality of residual stress is evaluated through two serial wedge IITs with respect to principal directions. We find good agreements between applied residual stress and residual stress evaluated by the developed model for biaxial tensile stress states.

Keywords

indentation residual stress metals deformation wedge indenter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. C. Noyan and J. B. Cohen, Residual Stress, pp. 13–46, Springer-Verlag, New York, USA (1987).Google Scholar
  2. 2.
    G. Totten, M. Howes, and T. Inoue, Handbook of Residual Stress and Deformation of Steel, pp. 27–53, ASM International, Ohio, USA (1996).Google Scholar
  3. 3.
    Y.-H. Lee, S. Ahn, J.-Y. Kim, C.-P. Park, and H.-K. Jang, Korean J. Met. Mater. 53, 162 (2015).CrossRefGoogle Scholar
  4. 4.
    Y.-H. Lee, J. S. Park, Y. Kim, and Y.-H. Huh, Korean J. Met. Mater. 53, 90 (2015).CrossRefGoogle Scholar
  5. 5.
    T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752 (1996).CrossRefGoogle Scholar
  6. 6.
    A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
  7. 7.
    S. Suresh and A. E. Giannakopoulos, Acta Mater. 46, 5755 (1998).CrossRefGoogle Scholar
  8. 8.
    J. G. Swadener, B. Taljat, and G. M. Pharr, J. Mater. Res. 16, 2091 (2001).CrossRefGoogle Scholar
  9. 9.
    A. E. Giannakopoulos, J. Appl. Mech. 70, 638 (2003).CrossRefGoogle Scholar
  10. 10.
    Y.-H. Lee and D. Kwon, Scripta Mater. 49, 459 (2003).CrossRefGoogle Scholar
  11. 11.
    J.-I. Jang, J. Ceram. Process. Res. 10, 291 (2009).Google Scholar
  12. 12.
    Y.-H. Lee and D. Kwon, Acta Mater. 52, 1555 (2004).CrossRefGoogle Scholar
  13. 13.
    Y.-H. Lee, K. Takashima, Y. Higo, and D. Kwon, Scripta Mater. 49, 459 (2003).CrossRefGoogle Scholar
  14. 14.
    J.-H. Han, J.-S. Lee, Y.-H. Lee, M.-J. Choi, G. Lee, D. Kwon, et al. Key Eng. Mat. 345-346, 1125 (2007).CrossRefGoogle Scholar
  15. 15.
    M.-J. Choi, S.-K. Kang, I. Kang, and D. Kwon, J. Mater. Res. 27, 1 (2011).CrossRefGoogle Scholar
  16. 16.
    Y.-C. Kim, M.-J. Choi, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 21, 850 (2015).CrossRefGoogle Scholar
  17. 17.
    Y.-C. Kim, H.-J. Ahn, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 22, 12 (2016).CrossRefGoogle Scholar
  18. 5.
    T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752 (1996).CrossRefGoogle Scholar
  19. 6.
    A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
  20. 7.
    S. Suresh and A. E. Giannakopoulos, Acta Mater. 46, 5755 (1998).CrossRefGoogle Scholar
  21. 8.
    J. G. Swadener, B. Taljat, and G. M. Pharr, J. Mater. Res. 16, 2091 (2001).CrossRefGoogle Scholar
  22. 9.
    A. E. Giannakopoulos, J. Appl. Mech. 70, 638 (2003).CrossRefGoogle Scholar
  23. 10.
    Y.-H. Lee and D. Kwon, Scripta Mater. 49, 459 (2003).CrossRefGoogle Scholar
  24. 11.
    J.-I. Jang, J. Ceram. Process. Res. 10, 291 (2009).Google Scholar
  25. 12.
    Y.-H. Lee and D. Kwon, Acta Mater. 52, 1555 (2004).CrossRefGoogle Scholar
  26. 13.
    Y.-H. Lee, K. Takashima, Y. Higo, and D. Kwon, Scripta Mater. 49, 459 (2003).CrossRefGoogle Scholar
  27. 14.
    J.-H. Han, J.-S. Lee, Y.-H. Lee, M.-J. Choi, G. Lee, D. Kwon, et al. Key Eng. Mat. 345-346, 1125 (2007).CrossRefGoogle Scholar
  28. 15.
    M.-J. Choi, S.-K. Kang, I. Kang, and D. Kwon, J. Mater. Res. 27, 1 (2011).CrossRefGoogle Scholar
  29. 16.
    Y.-C. Kim, M.-J. Choi, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 21, 850 (2015).CrossRefGoogle Scholar
  30. 17.
    Y.-C. Kim, H.-J. Ahn, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 22, 12 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hee-Jun Ahn
    • 1
  • Jong-hyoung Kim
    • 1
  • Huiwen Xu
    • 1
  • Junsang Lee
    • 1
  • Ju-Young Kim
    • 2
  • Young-Cheon Kim
    • 3
  • Dongil Kwon
    • 1
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.School of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)UlsanRepublic of Korea
  3. 3.Mechanical Safety Technology Center, System Convergence Technology DivisionKTL (Korea Testing Laboratory)JinjuRepublic of Korea

Personalised recommendations