Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 512–518 | Cite as

Surface self-nanocrystallization of α+β titanium alloy by surface mechanical grinding treatment

Article

Abstract

In this work, the heavy deformation was performed on Ti6Al4V alloy by using surface mechanical grinding treatment (SMGT) in order to obtain surface nanocrystalline layer. The phase structure and microstructures in the deformation zones were characterized by XRD, SEM and TEM. The nanocrystallization mechanisms of α and α phase were clarified. The results show that a gradient structure including nano grain, quasi nanograin and micro-grains was achieved within the depth of 500 μm below the surface. The depth of nanocrystallines layer was at least 20 μm. From the non deformation zone in the center to the heavy deformation zone close to treated surface, dislocation densities gradually increased. The original coarse grains gradually evolved into dislocation cell structures and subgrains through dislocation movement. In the depth of about 20 μm below the treated surface, the subgrains began to split into nano-scale grains with high angle grain boundaries by lattice rotation and tilting mechanisms. During SMGT, β phase deformed and refined prior to α phase, and inhibited the generation of twinning in α grain. The coordinated deformation between a and β phase promoted the formation of nanocrystallines.

Keywords

alloy severe plastic deformation surface grain refinement transmission electron microscopy (TEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Garbacz, M. Gradzka-Dahlke, and K. J. Kurzydlowski, Wear 263, 572 (2007).CrossRefGoogle Scholar
  2. 2.
    I. P. Semenova, A. V. Polyakov, G. I. Raab, T. C. Lowe, and R. Z. Valiev, J. Mater. Sci. 47, 7777 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, and C. Demangel, Surf. Coat. Tech. 224, 82 (2013).CrossRefGoogle Scholar
  4. 4.
    S. D. Puckett, P. P. Lee, D. M. Ciombor, R. K. Aaron, and T. J. Webster, Acta Biomater. 6, 2352 (2010).CrossRefGoogle Scholar
  5. 5.
    T. S. Wang, J. K. Yu, and B. F. Dong, Surf. Coat. Tech. 200, 4777 (2006).CrossRefGoogle Scholar
  6. 6.
    K. Lu and J. Lu, Mat. Sci. Eng. A 15, 193 (1999).Google Scholar
  7. 7.
    K. Lu and J. Lu, Mat. Sci. Eng. A 375-377, 38 (2004).CrossRefGoogle Scholar
  8. 8.
    Z. B. Wang, J. Lu, and K. Lu, Acta Mater. 53, 2081 (2005).CrossRefGoogle Scholar
  9. 9.
    M. Lin, J. Lu, L. P. Wang, T. Xu, and Q. J. Xue, Acta Mater. 54, 5599 (2006).CrossRefGoogle Scholar
  10. 10.
    X. Wu, N. Tao, and Y. Hong, Acta Mater. 23, 2075 (2002).CrossRefGoogle Scholar
  11. 11.
    B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mat. Sci. Eng. A 458, 253 (2007).CrossRefGoogle Scholar
  12. 12.
    X. C. Liu, H. W. Zhang, and K. Lu, Science 342, 337 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. S. Zhang, L. C. Zhang, H. Z. Niu, X. F. Bai, S. Yu, X. Q. Ma, et al. Mater. Lett. 127, 4 (2014).CrossRefGoogle Scholar
  14. 14.
    T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science 331, 1587 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. S. Zhang, P. X. Zhang, H. Z. Niu, C. Chen, G. Wang, D. H. Xiao, et al. Mat. Sci. Eng. A 607, 351 (2014).CrossRefGoogle Scholar
  16. 16.
    Q. Wei, Z. L. Pan, X. L. Wu, B. E. Schuster, L. J. Kecskes, and R. Z. Valiev, Acta Mater. 59, 2423 (2011).CrossRefGoogle Scholar
  17. 17.
    C. H. Lu, B. A. Remington, B. R. Maddox, B. Kad, H. S. Park, and T. G. Kawasaki, Acta Mater. 61, 7767 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. S. Zhang, Z. Han, K. Wang, and K. Lu, Wear 260, 942 (2006).CrossRefGoogle Scholar
  19. 19.
    Y. S. Zhang, W. L. Li, G. Wang, L. C. Zhang, B. Yao, and Z. Han, Mater. Lett. 68, 432 (2012).CrossRefGoogle Scholar
  20. 20.
    H. Alihosseini, Z. M. Asle, K. Dehghani, and H. A. Shivaee, Mater. Lett. 74, 147 (2012).CrossRefGoogle Scholar
  21. 21.
    H. Q. Sun, Y. N. Shi, M. X. Zhang, and K. Lu, Acta Mater. 55, 975 (2007).CrossRefGoogle Scholar
  22. 22.
    K. Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Acta Mater. 52, 4101 (2004).CrossRefGoogle Scholar
  23. 23.
    X. L. Wu, J. Mater. Heat Treat. 26, 43 (2005).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Institute of New MaterialsInstitute of Northwest Nonferrous Metals ResearchXi’anChina

Personalised recommendations