Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 591–602 | Cite as

Research on constitutive models and hot workability of as-homogenized Al-Zn-Mg-Cu alloy during isothermal compression

  • Dan Xiao
  • Xiaoyan Peng
  • Xiaopeng Liang
  • Ying Deng
  • Guofu Xu
  • Zhimin Yin
Article

Abstract

Hot compression tests of as-homogenized Al-Zn-Mg-Cu alloy were performed at the deformation temperature range of 350-450 °C and the strain rate range of 0.001-1 s-1. The Arrhenius-type constitutive equation and the Avrami-type model were established to predict the flow behaviors of the alloy respectively. The processing map at the true strain of 0.92 was developed to evaluate the workability of the alloy and the related microstructures were investigated. The results show that the Avrami-type model has a higher accuracy to predict flow stress than the Arrhenius-type constitutive equation. The stable deformation occurs under high temperature or low strain rate mainly owing to the dynamic recrystallization. Flow instability is prone to occur under the condition of low temperature and high strain rate due to the initiation and the propagation of micro-cracks. According to the processing map and corresponding microstructure characteristics, the optimum processing parameters are in the temperature range of 380-405 °C and the strain rate range of 0.006-0.035 s-1.

Keywords

alloys hot working constitutive models microstructure electron backscattering diffraction (EBSD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Williams and E. A. Starke, Acta Mater. 51, 5775 (2003).CrossRefGoogle Scholar
  2. 2.
    E. A. Starke and J. T. Staley, Progr. Aerosp. Sci. 32, 131 (1996).CrossRefGoogle Scholar
  3. 3.
    Y. Deng, Z. M. Yin, and J. W. Huang, Mat. Sci. Eng. A 528, 1780 (2011).CrossRefGoogle Scholar
  4. 4.
    C. J. Shi and X. G. Chen, Mat. Sci. Eng. A 613, 91 (2014).CrossRefGoogle Scholar
  5. 5.
    C. J. Shi, W. M. Mao, and X. G. Chen, Mat. Sci. Eng. A 571, 83 (2013).CrossRefGoogle Scholar
  6. 6.
    W. Y. Liu, H. Zhao, D. Li, Z. Q. Zhang, G. J. Huang, and Q. Liu, Mat. Sci. Eng. A 596, 176 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Rajamuthamilselvan and S. Ramanathan, J. Alloy. Compd. 509, 948 (2011).CrossRefGoogle Scholar
  8. 8.
    M. A. Jabbari Taleghani, E. M. Ruiz Navas, M. Salehi, and J. M. Torralba, Mat. Sci. Eng. A 534, 624 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Wu, S. P. Wen, H. Huang, X. L. Wu, and K. Y. Gao, Mat. Sci. Eng. A 651, 415 (2016).CrossRefGoogle Scholar
  10. 10.
    G. L. Ji, Q. Li, and L. Li, Mat. Sci. Eng. A 615, 247 (2014).CrossRefGoogle Scholar
  11. 11.
    D. Feng, X. M. Zhang, S. D. Liu, and Y. L. Deng, Mat. Sci. Eng. A 608, 63 (2014).CrossRefGoogle Scholar
  12. 12.
    R. H. Zhu, Q. Liu, J. F. Li, S. Xiang, Y. L. Chen, and X. H. Zhang, J. Alloy. Compd. 650, 75 (2015).Google Scholar
  13. 13.
    Y. C. Lin and X. M. Chen, Mater. Design 32, 1733 (2011).CrossRefGoogle Scholar
  14. 14.
    X. Z. Kai, C. Chen, and X. F. Sun, Mater. Design 90, 1151 (2016).CrossRefGoogle Scholar
  15. 15.
    V. Senthilkumar, A. Balaji, and R. Narayanasamy, Mater. Design 37, 102 (2012).CrossRefGoogle Scholar
  16. 16.
    H. Z. Li, H. J. Wang, X. P. Liang, H. T. Liu, Y. Liu, and X. M. Zhang, Mat. Sci. Eng. A 528, 1548 (2011).CrossRefGoogle Scholar
  17. 17.
    Y. C. Lin, L. T. Li, and Y. C. Xia, J. Alloy. Compd. 550, 438 (2013).CrossRefGoogle Scholar
  18. 18.
    B. Li, Q. L. Pan, and Z. M. Yin, Mat. Sci. Eng. A 614, 199 (2014).CrossRefGoogle Scholar
  19. 19.
    H. F. Huang, F. Jiang, and J. Zhou, J. Alloy. Compd. 644, 862 (2015).CrossRefGoogle Scholar
  20. 20.
    G. Meng, B. L. Li, H. M. Li, H. Huang, and Z. R. Nie, Mat. Sci. Eng. A 517, 132 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Roy and S. Suwas, J. Alloy. Compd. 548, 110 (2013).CrossRefGoogle Scholar
  22. 22.
    C. Bruni, A. Forcellese, and F. Gabrielli, J. Mater. Process. Tech. 125-126, 242 (2002).CrossRefGoogle Scholar
  23. 23.
    H. Dehghan, S. M. Abbasi, A. Momeni, and A. Karimi Taheri, J. Alloy. Compd. 564, 13 (2013).CrossRefGoogle Scholar
  24. 24.
    H. R. Rezaei Ashtiani, M. H. Parsa, and H. Bisadi, Mat. Sci. Eng. A 545, 61 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal, and K. V. Kasiviswanathan, Mat. Sci. Eng. A 500, 114 (2009).CrossRefGoogle Scholar
  26. 26.
    X. Quelennec, N. Bozzolo, J. J. Jonas, and R. Loge, ISIJ Int. 51, 945 (2011).CrossRefGoogle Scholar
  27. 27.
    E. I. Poliak and J. J. Jonas, Acta Mater. 44, 127 (1996).CrossRefGoogle Scholar
  28. 28.
    Z. L. Lu, Q. L. Pan, X. Y. Liu, Y. J. Qin, Y. B. He, and S. F. Cao, Mech. Res. Commun. 38, 192 (2011).CrossRefGoogle Scholar
  29. 29.
    G. L. Ji, F. G. Li, Q. H. Li, H. Q. Li, and Z. Li, Comp. Mater. Sci. 48, 626 (2010).CrossRefGoogle Scholar
  30. 30.
    O. Sivakesavam and Y. V. R. K. Prasad, Mat. Sci. Eng. A 362, 118 (2003).Google Scholar
  31. 31.
    M. Aghaie-Khafri and F. Adhami, Mat. Sci. Eng. A 527, 1052 (2010).CrossRefGoogle Scholar
  32. 32.
    Y. Q. Ning, Z. K. Yao, H. Z. Guo, and M. W. Fu, J. Alloy. Compd. 584, 494 (2014).Google Scholar
  33. 33.
    A. Momeni and K. Dehghani, Mat. Sci. Eng. A 528, 4874 (2011).Google Scholar
  34. 34.
    S. Wang, L. G. Hou, J. R. Luo, J. S. Zhang, and L. Z. Zhuang, J. Mater. Process. Tech. 225, 110 (2015).Google Scholar
  35. 35.
    Y. C. Lin, D. G. He, M. S. Chen, and X. M. Chen, Mater. Design 97, 13 (2016).CrossRefGoogle Scholar
  36. 36.
    H. Z. Li, Z. Li, M. Song, X. P. Liang, and F. F. Guo, Mater. Design 31, 2171 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Dan Xiao
    • 1
  • Xiaoyan Peng
    • 1
  • Xiaopeng Liang
    • 1
  • Ying Deng
    • 1
  • Guofu Xu
    • 1
    • 2
  • Zhimin Yin
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Nonferrous Metallic Materials Science and Engineering, Ministry of EducationCentral South UniversityChangshaPR China

Personalised recommendations