Metals and Materials International

, Volume 23, Issue 3, pp 618–624 | Cite as

Influence of Cu2S precipitates dissolution on ferrite grain growth during heat treatment in the non-oriented electrical steel sheet

  • Yuan Wu
  • Fangjie Li
  • Ting Wang
  • Dan Zhao
  • Hefei Huang
  • Huigai Li
  • Shaobo Zheng


The factor to deduce grain growth of non-oriented electrical steel sheet during heat treatment was researched in this paper. Scanning electron microscope equipped with electron backscatter diffraction (EBSD), X-ray diffraction and transmission electron microscope were used to characterize the microstructure, dislocation density and precipitate, respectively. The EBSD results indicated that the grain size increased from 18.7 μm to 56 μm after heat treatment. Meanwhile, the characterization of grain size distribution, dislocation density and precipitates revealed that the dissolution of Cu2S precipitates, which act as inhibitor, may lead to the grain growth. In addition, the pinning force of grain boundary and the driving force of grain growth were calculated. Based on experiments results and theoretical calculations, the Cu2S precipitates with diameter of less than 39 nm and volume fraction of 1.74 × 10-4 would be sufficient to inhibit the ferrite grain growth. Heat treatment provides an efficient way to prompt the grain growth.


magnetic materials annealing grain growth transmission electron microscopy (TEM) Cu2S precipitate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. H. Bian, Y. P. Zeng, D. Nan, and M. Wu, J. Alloy. Compd. 588, 108 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).CrossRefGoogle Scholar
  3. 3.
    H. Shimanaka, Y. Ito, K. Matsumara, and B. Fukuda, J. Magn. Magn. Mater. 26, 57 (1982).CrossRefGoogle Scholar
  4. 4.
    M. F. Littmann, IEEE T. Magn. 7, 48 (1971).CrossRefGoogle Scholar
  5. 5.
    K. Matsumura and B. Fukuda, IEEE T. Magn. 20, 1533 (1984).CrossRefGoogle Scholar
  6. 6.
    M. Shiozaki and Y. Kurosaki, J. Mater. Eng. 11, 37 (1989).CrossRefGoogle Scholar
  7. 7.
    F. J. G. Landgraf, J. C. Teixeira, and M. F. De Campos, J. Magn. Magn. Mater. 301, 302 (1999).Google Scholar
  8. 8.
    T. Gladman, Grain Size Control, p. 298, Maney Pub., London, UK (2004).Google Scholar
  9. 9.
    C. Y. Nam, J. H. Han, Y. H. Chung, and M. C. Shin, Mat. Sci. Eng. A 347, 253 (2003).CrossRefGoogle Scholar
  10. 10.
    P. J. Apps, J. R. Bowen, and P. B. Prangnell, Acta Mater. 51, 2811 (2003).CrossRefGoogle Scholar
  11. 11.
    D. L. Liu, Y. L. Wang, X. D. Huo, N. J. Chen, W. R. Shao, Y. L. Kang, et al. Acta Metall. Sin. 38, 647 (2002).Google Scholar
  12. 12.
    J. Janis, A. Karasev, K. Nakajima, and P. G. Jonsson, ISIJ Int. 53, 476 (2013).CrossRefGoogle Scholar
  13. 13.
    X. Tao, J. Gu, and L. Han, ISIJ Int. 54, 1705 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. Liu, M. Kuwabara, and Y. Iwata, ISIJ Int. 47, 1672 (2007).CrossRefGoogle Scholar
  15. 15.
    Z. Liu, Y. Kobayashi, K. Nagai, J. Yang, and M. Kuwabara, ISIJ Int. 46, 744 (2006).CrossRefGoogle Scholar
  16. 16.
    A. Guillet, E. Es-sadiqi, G. Lesperance, and F. G. Hamel, ISIJ Int. 36, 1190 (1996).CrossRefGoogle Scholar
  17. 17.
    Z. Liu, Y. Kobayashi, and K. Nagai, Mater. Trans. 45, 479 (2004).CrossRefGoogle Scholar
  18. 18.
    Z. Liu, Y. Kobayashi, K. Nagai, J. Yang, and M. Kuwabara, Curr. Adv. Mater. Proc. 19, 743 (2006).Google Scholar
  19. 19.
    Z. Liu, Y. Kobayashi, and K. Nagai, ISIJ Int. 44, 1560 (2004).CrossRefGoogle Scholar
  20. 20.
    Z. Liu, Y. Kobayashi, and K. Nagai, Mater. Trans. 45, 479 (2005).CrossRefGoogle Scholar
  21. 21.
    K. Jenkins and M. Lindenmo, J. Magn. Magn. Mater. 320, 2423 (2008).CrossRefGoogle Scholar
  22. 22.
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  23. 23.
    G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956).CrossRefGoogle Scholar
  24. 24.
    P. A. Beck and P. R. Sperry, J. Appl. Phys. 21, 150 (1950).CrossRefGoogle Scholar
  25. 25.
    B. Garbarz, J. Marcisz, and J. Wojtas, Mater. Chem. Phys. 81, 486 (2003).CrossRefGoogle Scholar
  26. 26.
    R. L. Bodnar, I&SM 21, 19 (1994).Google Scholar
  27. 27.
    A. Kisko, J. Talonen, D. A. Porter, and L. P. Karjalainen, ISIJ Int. 55, 2217 (2015).CrossRefGoogle Scholar
  28. 28.
    Y. F. Shen, R. G. Guan, Z. Y. Zhao, and R. D. K. Misra, Acta Mater. 100, 247 (2015).CrossRefGoogle Scholar
  29. 29.
    M. Gómez, S. F. Medina, and P. Valles, ISIJ Int. 45, 1711 (2005).CrossRefGoogle Scholar
  30. 30.
    M. F. Ashby and R. Ebeling, T. Am. I. Min. Met. Eng. 236, 1396 (1966).Google Scholar
  31. 31.
    C. S. Smith, T. Metall. Soc. AIME 175, 15 (1948).Google Scholar
  32. 32.
    T. Gladman, P. Roy. Soc. Lond. A Mat. 294, 298 (1966).CrossRefGoogle Scholar
  33. 33.
    M. Chapa, S. F. Medina, V. López, and B. Fernandez, ISIJ Int. 42, 1288 (2002).CrossRefGoogle Scholar
  34. 34.
    A. J. DeArdo, G. A. Ratz, and P. J Wray, Thermomechanical Processing of Microalloyed Austenite (Conference proceedings), p. 113, Metal. Soc. AIME, Warrendale, USA (1982).Google Scholar
  35. 35.
    S. S. Hansen, J. B. Vander Sande, and M. Cohen, Metall. Trans. A. 11, 387 (1980).CrossRefGoogle Scholar
  36. 36.
    H. Q. Qi and Q. L. Yong, J. Iron Steel Res. Int. 17, 36 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yuan Wu
    • 1
  • Fangjie Li
    • 1
  • Ting Wang
    • 1
  • Dan Zhao
    • 1
  • Hefei Huang
    • 2
  • Huigai Li
    • 1
  • Shaobo Zheng
    • 1
  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of Sciences (CAS)ShanghaiChina

Personalised recommendations