Metals and Materials International

, Volume 23, Issue 3, pp 499–503 | Cite as

Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6

  • Hsuan-Han Lai
  • Chih-Chun Hsieh
  • Chi-Ming Lin
  • Weite Wu
Article
  • 48 Downloads

Abstract

The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a “complex regular structure”. In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.

Keywords

complex regular eutectic (Cr,Fe)23C6 confocal laser scanning microscope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Mendez, N. Barnes, K. Bell, S. D. Borle, S. S. Gajapathi, and S. D. Guest, J. Manuf. Process. 16, 4 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Atamert and H. K. D. H. Bhadeshia, Mat. Sci. Eng. A 130, 101 (1990).CrossRefGoogle Scholar
  3. 3.
    J. Yang, J. Tian, F. Hao, T. Dan, X. Ren, Q. Yang, et al. Appl. Surf. Sci. 289, 437 (2014).CrossRefGoogle Scholar
  4. 4.
    N. Yüksel and S. Sahin, Mater. Design 58, 491 (2014).CrossRefGoogle Scholar
  5. 5.
    S. C. Gallo, N. Alam, and R. O’Donnell, Surf. Coat. Tech. 214, 63 (2013).Google Scholar
  6. 6.
    Q. Wang and X. Li, Weld. J. 89, 133s (2010).Google Scholar
  7. 7.
    C. Fan, M. C. Chen, C. M. Chang, and W. Wu, Surf. Coat. Technol. 201, 908 (2006).CrossRefGoogle Scholar
  8. 8.
    C. M. Chang, C. M. Lin, C. C. Hsieh, J. H. Chen, and W. Wu, J. Alloy. Compd. 487, 83 (2009).Google Scholar
  9. 9.
    C. M. Lin, C. M. Chang, J. H. Chen, C. C. Hsieh, and W. Wu, Surf. Coat. Tech. 205, 2590 (2010).CrossRefGoogle Scholar
  10. 10.
    H. H. Lai, C. C. Hsieh, C. M. Lin, and W. Wu, Surf. Coat. Tech. 239, 233 (2014).CrossRefGoogle Scholar
  11. 11.
    M. N. Croker, R. S. Fidler, and R. W. Smith, J. Cryst. Growth 11, 121 (1971).CrossRefGoogle Scholar
  12. 12.
    M. N. Croker, R. S. Fidler, and R. W. Smith, Proc. R. Soc. Lond. A 335, 15 (1973).CrossRefGoogle Scholar
  13. 13.
    M. N. Croker, D. Baragar, and R. W. Smith, J. Cryst. Growth 30, 198 (1975).CrossRefGoogle Scholar
  14. 14.
    M. R. Taylor, R. S. Fidler, and R. W. Smith, Metall. Trans. 2, 1793 (1971).CrossRefGoogle Scholar
  15. 15.
    A. Hellawell, Prog. Mater. Sci. 15, 3 (1970).CrossRefGoogle Scholar
  16. 16.
    S. A. Souza, C. T. Rios, A. A. Coelho, P. L. Ferrandini, S. Gama, and R. Caram, J. Alloy. Compd. 402, 156 (2005).CrossRefGoogle Scholar
  17. 17.
    W. L. Wang, F. P. Dai, and B. B. Wei, Sci. China Ser. G 50, 472 (2007).CrossRefGoogle Scholar
  18. 18.
    C. M. Lin, H. H. Lai, J. C. Kuo, and W. Wu, Mater. Charact. 62, 1124 (2011).CrossRefGoogle Scholar
  19. 19.
    L. Deillon, J. Zollinger, D. Daloz, M. Založnik, and H. Combeau, Mater. Charact. 97, 125 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Taendl, S. Nambu, A. Orthacker, G. Kothleitner, J. Inoue, T. Koseki, et al. Mater. Charact. 108, 137 (2015).CrossRefGoogle Scholar
  21. 21.
    Z. Miao, A. Shan, W. Wang, J. Lu, W. Xu, and H. Song, T. Nonferr. Metal. Soc. 21, 236 (2011).Google Scholar
  22. 22.
    F. Huang, X. Wang, J. Zhang, C. Ji, Y. Fang, and Y. Yu, J. Iron Steel Res. Int. 15, 78 (2008).CrossRefGoogle Scholar
  23. 23.
    L. Zheng, X. Hu, X. Kang, and D. Li, Mater. Design 78, 42 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. H. Rong, Y. X. Guo, and G. X. Hu, Metallography 22, 47 (1989).CrossRefGoogle Scholar
  25. 25.
    M. H. Lewis and B. Hattersley, Acta Metall. 13, 1159 (1965).CrossRefGoogle Scholar
  26. 26.
    M. Shamsuzzoha, L. M. Hogan, D. J. Smith, and P. A. Deymier, J. Cryst. Growth 112, 635 (1991).Google Scholar
  27. 27.
    C. Lemaignan and Y. Malmejac, J. Cryst. Growth 46, 771 (1979).CrossRefGoogle Scholar
  28. 28.
    Y. Koçak, S. Engin, U. Böyük, and N. Maraşlı, Curr. Appl. Phys. 13, 587 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hsuan-Han Lai
    • 1
  • Chih-Chun Hsieh
    • 1
  • Chi-Ming Lin
    • 1
  • Weite Wu
    • 1
  1. 1.Department of Materials Science and EngineeringNational Chung Hsing University, TaichungTaiwanChina

Personalised recommendations