Metals and Materials International

, Volume 23, Issue 3, pp 504–511 | Cite as

Measurement of microstructure and eutectic penetration rate on irradiated metallic fuel after high-temperature heating test

  • June-Hyung Kim
  • Jin-Sik Cheon
  • Byoung-Oon Lee
  • Jun-Hwan Kim
  • Hee-Moon Kim
  • Boung-Ok Yoo
  • Yang-Hong Jung
  • Sang-Bok Ahn
  • Chan-Bock Lee


Microstructural development of irradiated U-10Zr fuel slug with T92 cladding specimen was examined after thermal exposure of 750 °C for 1 h. Optical microscopy, scanning electron microcopy and electron microprobe analysis were employed to examine the microstructure, constituent migration, and eutectic penetration. Migration phenomena of U, Zr, Fe, and Cr indicative of Soret effect was observed, and Nd lanthanide fission product was found at the eutectic melting region. Eutectic penetration was quantified and correlated to a thermal activation model with a good agreement. Compared to the previously reported eutectic penetration rates for the unirradiated U-10Zr fuel slug with FMS (Ferritic Martensitic Steel, HT9) cladding specimens, the eutectic penetration rate determined from this study for the irradiated fuel specimen was higher. This phenomenon can be caused by the effect of lanthanide fission product migration into fuel slug-cladding interface during irradiation, and lowering the eutectic threshold temperature for the irradiated fuel.


metals melting microstructure optical microscopy scanning electron microscopy (SEM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Waltar, D. R. Todd, and P. V. Tsvetkov, Fast Spectrum Reactors, pp. 3–46, Springer, New York, USA (2012).CrossRefGoogle Scholar
  2. 2.
    A. B. Cohen, H. Tsai, and L. A. Neimark, J. Nucl. Mater. 204, 244 (1993).CrossRefGoogle Scholar
  3. 3.
    H. Tsai, Y. Y. Liu, D. Y. Wang, and J. M. Kramer, ANL/CP-71935, ANL (1991).Google Scholar
  4. 4.
    J. H. Kim, J. S. Cheon, J. H. Kim, B. O. Lee, and C. B. Lee, Met. Mater. Int. 20, 819 (2014).CrossRefGoogle Scholar
  5. 5.
    K. S. Lee, I. Y. Kim, W. Lee, and Y. S. Yoon, Met. Mater. Int. 21, 498 (2015).CrossRefGoogle Scholar
  6. 6.
    T. H. Bauer, A. E. Wright, W. R. Robinson, J. W. Holland, and E. A. Rhodes, Nucl. Technol. 92, 325 (1990).CrossRefGoogle Scholar
  7. 7.
    Y. Y. Liu, H. Tsai, M. C. Billone, J. W. Holland, and J. M. Kramer, J. Nucl. Mater. 204, 194 (1993).CrossRefGoogle Scholar
  8. 8.
    D. Crawford, D. L. Porter, and S. L. Hayes, J. Nucl. Mater. 371, 202 (2007).CrossRefGoogle Scholar
  9. 9.
    H. Tsai, Proceedings of the International Fast Reactor Safety Meeting, p. 257, Utah, USA (1990).Google Scholar
  10. 10.
    Y. I. Chang, L. C. Walters, J. J. Laidler, D. R. Pedersen, D. C. Wade, and M. J. Lineberry, Integral Fast Reactor Program; Annual Progress Report FY 1993, pp. 99–109, ANL, USA (1994).CrossRefGoogle Scholar
  11. 11.
    C. Choi, T. Jeong, K. Lee, J. Jeong, and K. Ha, Transactions of the Korean Nuclear Society Autumn Meeting, p. 31, Gyeongju, Korea (2015).Google Scholar
  12. 12.
    J. S. Cheon, B. O. Lee, C. T. Lee, J. H. Kim, B. G. Kim, C. B. Lee et al. Transactions of the Korean Nuclear Nuclear Society Spring Meeting, p. 44, Jeju, Korea (2014).Google Scholar
  13. 13.
    G. L. Hofman, R. G. Pahl, C. E. Lahm, and D. L. Porter, Metall. Trans. A 21, 517 (1990).CrossRefGoogle Scholar
  14. 14.
    Y. H. Sohn, M. A. Dayananda, G. L. Hofman, R. V. Strain, and S. L. Hayes, J. Nucl. Mater. 279, 317 (2000).CrossRefGoogle Scholar
  15. 15.
    Y. S. Kim, G. L. Hofman, S. L. Hayes, and Y. H. Sohn, J. Nucl. Mater. 327, 27 (2004).CrossRefGoogle Scholar
  16. 16.
    D. D. Keiser, Comprehensive Nuclear Materials: Chapter 3. 15, pp. 428–430, Elsevier, USA (2012).Google Scholar
  17. 17.
    K. Huang, Y. Park, A. Ewh, B. H. Sencer, J. R. Kennedy, Y. H. Sohn, et al. J. Nucl. Mater. 424, 82 (2012).CrossRefGoogle Scholar
  18. 18.
    K. Huang, Y. Park, L. Zhou, K. R. Coffey, Y. H. Sohn, B. H. Sencer, et al. J. Nucl. Mater. 451, 372 (2014).CrossRefGoogle Scholar
  19. 19.
    Y. Park, K. Huang, A. Pazy Puente, H. S. Lee, B. H. Sencer, Y. H. Sohn, et al. Metall. Mater. Trans. A 46, 72 (2015).CrossRefGoogle Scholar
  20. 20.
    T. B. Massalski, Binary Alloy Phase Diagrams, 2 nd ed., p. 1789, ASM International, Ohio, USA (1990).Google Scholar
  21. 21.
    D. D. Keiser, Comprehensive Nuclear Materials: Chapter 3. 15, pp. 435–437, Elsevier, USA (2012).Google Scholar
  22. 22.
    G. L. Hofman, A. G. Hins, D. L. Porter, L. Leibowitz, and E. L. Wood, Proceedings of the International Conference on Reliable Fuels for Liquid Metal Reactors, p. 4, Arizona, USA (1986).Google Scholar
  23. 23.
    T. Ogata, Comprehensive Nuclear Materials: Chapter 3. 01, pp. 33–35, Elsevier, USA (2012).Google Scholar
  24. 24.
    H. M. Heo, S. G. Park, J. H. Kim, S. H. Kim, and M. Y. Heo, Korean J. Met. Mater. 53, 177 (2015).CrossRefGoogle Scholar
  25. 25.
    J. H. Kim, B. O. Lee, J. S. Cheon, and S. H. Kim, Korean J. Met. Mater. 54, 855 (2016).CrossRefGoogle Scholar
  26. 26.
    H. J. Ryu, B. O. Lee, S. J. Oh, J. H. Kim, and C. B. Lee, J. Nucl. Mater. 392, 206 (2009).CrossRefGoogle Scholar
  27. 27.
    S. W. Yang, H. J. Ryu, J. H. Kim, B. O. Lee, and C. B. Lee, J. Nucl. Mater. 401, 98 (2010).CrossRefGoogle Scholar
  28. 28.
    J. H. Kim, H. J. Ryu, J. H. Baek, S. J. Oh, B. O. Lee, and C. B. Lee, J. Nucl. Mater. 394, 144 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • June-Hyung Kim
    • 1
  • Jin-Sik Cheon
    • 1
  • Byoung-Oon Lee
    • 1
  • Jun-Hwan Kim
    • 1
  • Hee-Moon Kim
    • 1
  • Boung-Ok Yoo
    • 1
  • Yang-Hong Jung
    • 1
  • Sang-Bok Ahn
    • 1
  • Chan-Bock Lee
    • 1
  1. 1.Korea Atomic Energy Research InstituteDaejeonRepublic of Korea

Personalised recommendations