Metals and Materials International

, Volume 23, Issue 3, pp 568–575 | Cite as

Heat transfer and solidification microstructure evolution of continuously cast steel by non-steady physical simulation

  • Peng Lan
  • Diem Ai Nguyen
  • Soo-Yeon Lee
  • Jung-Wook Cho
Article
  • 122 Downloads

Abstract

The heat transfer and solidification microstructure evolution during continuous casting were experimentally studied in this work. A new approach to physically simulate the steel solidification behavior during continuous casting was developed. Six steel grades with different solidification mode were introduced to elucidate the carbon equivalent dependent mold heat flux, prior austenite grain size and secondary dendrite arm spacing. It is found that the non-steady mold heat fluxes in the experiment against time for all steel grades are comparative to that versus distance in practical continuous casting. Due to the occurrence of L→L+δ→δ+γ→γ transformation with the largest amount of volume contraction in hypo-peritectic steel, it shows the lowest mold heat flux among these six steel grades. It is also demonstrated from the solidification microstructure results that the prior austenite grain size and secondary dendrite arm spacing in the physical simulation are in good agreement with those in continuously cast strand. In addition, the steel with a higher temperature for the onset of δ→γ transformation reveals the larger prior austenite grains resulted from the higher grains growth rate in the post solidification process.

Keywords

metals casting solidification heat transfer physical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Mahapatra, J. K. Brimacombe, and I. V. Samarasekera, Metall. Trans. B 22, 875 (1991).CrossRefGoogle Scholar
  2. 2.
    A. Yamauchi, K. Sorimachi, T. Sakuraya, and T. Fujii, ISIJ Int. 33, 140 (1993).CrossRefGoogle Scholar
  3. 3.
    J. W. Cho, T. Emi, H. Shibata, and M. Suzuki, ISIJ Int. 38, 834 (1998).CrossRefGoogle Scholar
  4. 4.
    J. Cho, H. Shibata, T. Emi, and M. Suzuki, ISIJ Int. 38, 440 (1998).CrossRefGoogle Scholar
  5. 5.
    J. K. Park, B. G. Thomas, and I. V. Samarasekera, Ironmak. Steelmak. 29, 359 (2002).CrossRefGoogle Scholar
  6. 6.
    Y. A. Meng and B. G. Thomas, Metall. Mater. Trans. B 34, 685 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Luo, M. Zhu, and S. Louhenkilpi, ISIJ Int. 52 823 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Wang, S. Luo, and M. Zhu, Metall. Mater. Trans. A 46, 396 (2015).CrossRefGoogle Scholar
  9. 9.
    K. C. Mills, P. Ramirez-Lopez, P. D. Lee, B. Santillana, B. G. Thomas, and R. Morales, Ironmak. Steelmak. 41, 242 (2014).CrossRefGoogle Scholar
  10. 10.
    P. Ramirez-Lopez, P. D. Lee, and K. C. Mills, ISIJ Int. 50, 425 (2010).CrossRefGoogle Scholar
  11. 11.
    C. Bernhard, H. Hiebler, and M. M. Wolf, ISIJ Int. 36, S163 (1996).CrossRefGoogle Scholar
  12. 12.
    R. Pierer and C. Bernhard, J. Mater. Sci. 43, 6938 (2008).CrossRefGoogle Scholar
  13. 13.
    C. Bernhard and G. Xia, Ironmak. Steelmak. 33, 52 (2006).CrossRefGoogle Scholar
  14. 14.
    C. Bernhard, J. Reiter, and H. Presslinger, Metall. Mater. Trans. B 39, 885 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Rowan, B. G. Thomas, R. Pierer, and C. Bernhard, Metall. Mater. Trans. B 42, 837 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, and A. W. Cramb, Metall. Mater. Trans. B 36, 355 (2005).CrossRefGoogle Scholar
  17. 17.
    A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, A. W. Cramb, et al. Metall. Mater. Trans. B 36, 373 (2005).CrossRefGoogle Scholar
  18. 18.
    T. T. Natarajan, T. J. Piccone, K. D. Powers, C. C. Snyder, A. B. Badri, and A. Cramb, Iron Steel Technol. 2, 63 (2005).Google Scholar
  19. 19.
    H. Zhang, W. Wang, F. Ma, and L. Zhou, Metall. Mater. Trans. B 46, 2361 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Zhang and W. Wang, Metall. Mater. Trans. B 47, 920 (2016).CrossRefGoogle Scholar
  21. 21.
    E. Y. Ko, J. Choi, J. Y. Park, and I. Sohn, Met. Mater. Int. 20, 141 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Y. Park, E. Y. Ko, J. Choi, and I. Sohn, Met. Mater. Int. 20, 1103 (2014).CrossRefGoogle Scholar
  23. 23.
    D.-W. Yoon, J.-W. Cho, and S.-H. Kim, Met. Mater. Int. 21, 580 (2015).CrossRefGoogle Scholar
  24. 24.
    R. B. Mahapatra, J. K. Brimacombe, and I. V. Samarasekera, Metall. Trans. B 22, 875 (1991).CrossRefGoogle Scholar
  25. 25.
    C. A. M. Pinheiro, I. V. Samarasekera, J. K. Brimacomb, and B. N. Walker, Ironmak. Steelmak. 27, 37 (2000).CrossRefGoogle Scholar
  26. 26.
    C. A. M. Pinheiro, I. V. Samarasekera, J. K. Brimacomb, B. Howes, and O. Gussias, Ironmak. Steelmak. 27, 144 (2013).CrossRefGoogle Scholar
  27. 27.
    S. N. Singh and K. E. Blazek, JOM 26, 17 (1974).Google Scholar
  28. 28.
    J. Reiter, C. Bernhard, and H. Presslinger, Mater. Charact. 59, 737 (2008).CrossRefGoogle Scholar
  29. 29.
    M. Ohno, S. Tsuchiya, and K. Matsuura, ISIJ Int. 55, 2374 (2015).CrossRefGoogle Scholar
  30. 30.
    K. Yasumoto, T. Nagamichi, Y. Maehara, and K. Gunji, Tetsuto-Hagane 73, 1738 (1987).CrossRefGoogle Scholar
  31. 31.
    Y. Kobayashi, S. Iwasaki, K. Nakazato, T. Hibaru, S. Kuroda, K. Nagai, et al. ISIJ Int. 48, 344 (2008).CrossRefGoogle Scholar
  32. 32.
    S. K. Choudhary and S. Ganguly, ISIJ Int. 47, 1759 (2007).CrossRefGoogle Scholar
  33. 33.
    J. M. Cabrera-Marrero, V. Carreno-Galindo, R. D. Morales, and F. Chávez, ISIJ Int. 38, 812 (1998).CrossRefGoogle Scholar
  34. 34.
    S.-H. Kim, K.-S. Kim, K. S. Cho, K. J. Euh, Y. M. Rhyim, and K.-A. Lee, Korean J. Met. Mater. 53, 96 (2015).Google Scholar
  35. 35.
    S.-I. Kwon, J.-H. Do, C.-Y. Jo, and H.-U. Hong, Korean J. Met. Mater. 54, 29 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Peng Lan
    • 1
  • Diem Ai Nguyen
    • 2
  • Soo-Yeon Lee
    • 2
  • Jung-Wook Cho
    • 2
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations