Influence of processing parameters on the characteristics of surface layers of low temperature plasma nitrocarburized AISI 630 martensitic stainless steel

Abstract

Plasma nitrocarburizing was performed on solution-treated AISI 630 martensitic precipitation hardening stainless steel samples with a gas mixture of H2, N2, and CH4 with changing temperature, discharge voltage and amount of CH4. When nitrocarburized with increasing temperature from 380 °C to 430 °C at fixed 25% N2 and 6% CH4, the thickness of expanded martensite (α'N) layer and surface hardness increased up to 10 μm and 1323 HV0.05, respectively but the corrosion resistance decreased. Though the increase of discharge voltage from 400 V to 600 V increased α'N layer thickness and surface hardness (up to 13 μm and 1491 HV0.05, respectively), the treated samples still showed very poor corrosion behavior. Thus, to further improve the corrosion resistance, the influence of variation of the amount of CH4 in the nitrocarburizing process was investigated. Increasing the CH4 percentage aided higher corrosion resistance, although it decreased the α'N layer thickness. The most appropriate conditions for moderate α'N layer thickness, high surface hardness and better corrosion resistance than the solution-treated bare sample were established, which is plasma nitrocarburizing at 400 °C with 400 V discharge voltage and containing 25% N2 and 4% CH4.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Xi, D. Liu, and D. Han, Surf. Coat. Tech. 202, 2577 (2008).

    Article  Google Scholar 

  2. 2.

    Y. Xi, D. Liu, and D. Han, Appl. Surf. Sci. 254, 5953 (2008).

    Article  Google Scholar 

  3. 3.

    M. F. Yan and R. L. Liu, Appl. Surf. Sci. 256, 6065 (2010).

    Article  Google Scholar 

  4. 4.

    Z. L. Zhang and T. Bell, Surf. Eng. 1, 131 (1985).

    Article  Google Scholar 

  5. 5.

    E. Menthe, K.-T. Rie, J. W. Schultze, S. Simson, Surf. Coat. Tech. 74-75, 412 (1995).

    Article  Google Scholar 

  6. 6.

    Z. Cheng, C. X. Li, H. Dong, and T. Bell, Surf. Coat. Tech. 191, 195 (2005).

    Article  Google Scholar 

  7. 7.

    T. Bell, Y. Sun, and A. Suhadi, Vacuum 59, 14 (2000).

    Article  Google Scholar 

  8. 8.

    M. K. Lei, Y. X. Ou, K. S. Wang, and L. Chen, Surf. Coat. Tech. 205, 4602 (2011).

    Article  Google Scholar 

  9. 9.

    I. Lee, Met. Mater. Int. 14, 77 (2008).

    Article  Google Scholar 

  10. 10.

    R. L. Liu and M. F. Yan, Mater. Design 31, 2355 (2010).

    Article  Google Scholar 

  11. 11.

    R. L. Liu, Y. J. Qiao, M. F. Yan, and Y. D. Fu, Met. Mater. Int. 19, 1151 (2013).

    Article  Google Scholar 

  12. 12.

    R. L. Liu and M. F. Yan, Surf. Coat. Tech. 204, 2251 (2010).

    Article  Google Scholar 

  13. 13.

    A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Corros. Sci. 48, 1513 (2006).

    Article  Google Scholar 

  14. 14.

    C. Li and T. Bell, Corros. Sci. 46, 1527 (2004).

    Article  Google Scholar 

  15. 15.

    S. P. Brühl, R. Charadia, S. Simison, D. G. Lamas, and A. Cabo, Surf. Coat. Tech. 204, 3280 (2010).

    Article  Google Scholar 

  16. 16.

    G. F. Vander Voort and E. P. Manilova, Adv. Mater. Process. 163, 32 (2005)

    Google Scholar 

  17. 17.

    S. Kim, J. Yoo, J. Priest, and M. Fewell, Surf. Coat. Tech. 163-164, 380 (2003).

    Article  Google Scholar 

  18. 18.

    P. Kochmanski and J. Nowacki, Surf. Coat. Tech. 202, 4834 (2008).

    Article  Google Scholar 

  19. 19.

    F. Mahboubi and K. Abdolvahabi, Vacuum 81, 239 (2006).

    Article  Google Scholar 

  20. 20.

    S. Leigh, M. Samandi, G. Collins, K. T. Short, P. Martin, and L. Wielunski, Surf. Coat. Tech. 85, 37 (1996).

    Article  Google Scholar 

  21. 21.

    Y. Sun and E. Haruman, Vacuum 81, 114 (2006).

    Article  Google Scholar 

  22. 22.

    J. R. G. da Silva and R. B. McLellan, Mater. Sci. Eng. 26, 83 (1976).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Insup Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, I. Influence of processing parameters on the characteristics of surface layers of low temperature plasma nitrocarburized AISI 630 martensitic stainless steel. Met. Mater. Int. 23, 1112–1120 (2017). https://doi.org/10.1007/s12540-017-6491-5

Download citation

Keywords

  • plasma nitrocarburizing
  • AISI 630 stainless steel
  • expanded martensite layer
  • corrosion resistance
  • discharge voltage