Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 481–487 | Cite as

Effects of annealing heat treatment on the corrosion resistance of Zn/Mg/Zn multilayer coatings

  • KiTae Bae
  • JoungHyun La
  • InGyu Lee
  • SangYul Lee
  • KyungHoon Nam
Article

Abstract

Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.

Keywords

Zn/Mg/Zn multilayer coating annealing corrosion electrochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. C. Hosking, M. A. Ström, P. H. Shipway, and C. D. Rudd, Corros. Sci. 49, 3669 (2007).CrossRefGoogle Scholar
  2. 2.
    T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corros. Sci. 86, 231 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Yao, W. Chen, and W. Gao, Surf. Coat. Tech. 219, 126 (2013).CrossRefGoogle Scholar
  4. 4.
    M. H. Hong, D. G. Kang, D. J. Paik, H. S. Hwang, and S. H. Pack, Korean J. Met. Mater. 54, 723 (2016).CrossRefGoogle Scholar
  5. 5.
    J. H. La, S. Y. Lee, and S. J. Hong, Surf. Coat. Tech. 259, 56 (2014).CrossRefGoogle Scholar
  6. 6.
    M. H. Lee, Y. W. Kim, K. M. Lim, S. H. Lee, and K. M. Moon, T. Nonferr. Metal. Soc. 23, 876 (2013).Google Scholar
  7. 7.
    K. T. Bae, J. H. La, K. B. Kim, and S. Y. Lee, J. Kor. Inst. Surf. Eng. 47, 330 (2014).Google Scholar
  8. 8.
    P. Volovitch, C. Allely, and K. Ogle, Corros. Sci. 51, 1251 (2009).CrossRefGoogle Scholar
  9. 9.
    T. Prosek, A. Nazarov, J. Stoulil, U. Bexell, D. Thierry, and J. Serak, Corros. Sci. 50, 2216 (2008).CrossRefGoogle Scholar
  10. 10.
    E. Diler, S. Rioual, B. Lescop, D. Thierry, and B. Rouvellou, Corros. Sci. 65, 178 (2012).CrossRefGoogle Scholar
  11. 11.
    J. M. Byun, J. M. Yu, D. K. Kim, T. Y. Kim, W. S. Jung, and Y. D. Kim, Korean J. Met. Mater. 51, 413 (2013).CrossRefGoogle Scholar
  12. 12.
    M. S. Oh, S. H. Kim, J. S. Kim, J. W. Lee, J. H. Shon, and Y. S. Jin, Met. Mater. Int. 22, 26 (2016).CrossRefGoogle Scholar
  13. 13.
    K. Schluter, C. Zamponi, N. Hort, K. U. Kainer, and E. Quandt, Corrros. Sci. 63, 234 (2012).CrossRefGoogle Scholar
  14. 14.
    O. Zywitzki, Th. Modes, B. Schefeel, Ch. Metzner, Prakt. Metallogr.-Pr. M. 49, 210 (2012).CrossRefGoogle Scholar
  15. 15.
    J. L. Davies, C. F. Glover, J. V. D. Langkruis, E. Zoestbergen, and G. Williams, Corros. Sci. 100, 607 (2015).CrossRefGoogle Scholar
  16. 16.
    Z. Mori, T. Doi, and Y. Hakuraku, J. Appl. Phys. 110, 2226 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Nazon, B. Fraisse, J. Sarradin, S. G. Fries, J. C. Tedenac, and N. Fréty, Appl. Surf. Sci. 254, 5670 (2008).CrossRefGoogle Scholar
  18. 18.
    K. Lal, Commis. Energ. At. Report. CEA-R 3136, 54 (1967).Google Scholar
  19. 19.
    N. H. Nachtrieb, J. A. Weil, E. Catalano, and A. W. Lawson, J. Chem. Phys. 20, 1189 (1952).CrossRefGoogle Scholar
  20. 20.
    S. Liu, H. Sun, L. Sun, and H. Fan, Corros. Sci. 65, 520 (2012).CrossRefGoogle Scholar
  21. 21.
    B. Zhang, H. B. Zhou, E. H. han, and W. Ke, Electrochim. Acta 54, 6598 (2009).CrossRefGoogle Scholar
  22. 22.
    V. K. W. Grips, V. E. Selvi, H. C. Barshilia, and K. S. Rajam, Electrochim. Acta 51, 3461 (2006).CrossRefGoogle Scholar
  23. 23.
    K. C. Pack, D. H. Cho, B. H. Kim, K. R. Kim, and I. M. Park, Korean J. Met. Mater. 54, 313 (2016).CrossRefGoogle Scholar
  24. 24.
    A. L. Rudd, C. B. Breslin, and F. Mansfeld, Corros. Sci. 42, 275 (2000)CrossRefGoogle Scholar
  25. 25.
    J. García-Antón, R. M. Fernández-Domene, R. Sánchez-Tovar, C. Escrivà-Cerdán, R. Leiva-García, V. García, et al. Chem. Eng. Sci. 111, 402 (2014).CrossRefGoogle Scholar
  26. 26.
    M. A. Fusco, Y. Ay, A. H. M. Casey, M. A. Bourham, and A. L. Winfrey, Prog. Nucl. Energ. 89, 159 (2016)CrossRefGoogle Scholar
  27. 27.
    E. C. Gomes and M. A. S. Oliveria, Surf. Coat. Technol. 205, 2857 (2011).CrossRefGoogle Scholar
  28. 28.
    T. S. N. S. Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, Surf. Coat. Technol. 200, 3438 (2006).CrossRefGoogle Scholar
  29. 29.
    M. Laleh, A. S. Rouhaghdam, T. Shahrabi, and A. Shanghi, J. Alloy. Compd. 496, 548 (2010).CrossRefGoogle Scholar
  30. 30.
    C. Liu, Q. Bi, and A. Matthews, Corros. Sci. 43, 1953 (2001).CrossRefGoogle Scholar
  31. 31.
    C. Gu, J. Lian, L. Niu, and Z. Jiang, Surf. Coat. Technol. 197, 61 (2005).CrossRefGoogle Scholar
  32. 32.
    G. Song and A. Atrens, Adv. Eng. Mater. 1, 11 (1999).CrossRefGoogle Scholar
  33. 33.
    G. Song and A. Atrens, Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar
  34. 34.
    R. Krieg, A. Vimalanandan, and M. Rohwerder, J. Electrochem. Soc. 161, C156 (2014).CrossRefGoogle Scholar
  35. 35.
    S. K. Das and L. A. Daivs, Mater. Sci. Eng. 98, 1 (1988).CrossRefGoogle Scholar
  36. 36.
    C. Gu, J. Lian, J. He, Z. Jiang, and Q. Jiang, Surf. Coat. Technol. 200, 5413 (2006).CrossRefGoogle Scholar
  37. 37.
    J. Li, Y. Tian, Z. Huang, and X. Zhang, Appl. Surf. Sci. 252, 2839 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • KiTae Bae
    • 1
  • JoungHyun La
    • 1
  • InGyu Lee
    • 1
  • SangYul Lee
    • 1
  • KyungHoon Nam
    • 2
  1. 1.Center for Surface Technology and Applications, Department of Materials EngineeringKorea Aerospace UniversityGoyangRepublic of Korea
  2. 2.POSCOTE-D Project DepartmentPOSCOGwagyangRepublic of Korea

Personalised recommendations