Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 450–458 | Cite as

Effects of C and Si on strain aging of strain-based API X60 pipeline steels

  • Hyo Kyung Sung
  • Dong Ho Lee
  • Sunghak Lee
  • Byeong-Joo Lee
  • Seung-Pyo Hong
  • Young-Woon Kim
  • Jang Yong Yoo
  • Byoungchul Hwang
  • Sang Yong Shin
Article

Abstract

Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.

Keywords

metals dislocation strain aging yield phenomena tensile test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Nagai, Y. Shinohara, S. Sakamoto, E. Tsuru, and H. Asahi, Proc. 19th Int. Offshore Polar Eng. Conf., pp. 56–60, Osaka, Japan (2009).Google Scholar
  2. 2.
    A. Liessem, M. K. Graef, G. Knauf, and U. Marewski, Proc. 4th Int. Conf. Pipeline Technology, pp. 1263–1281, Ostend, Belgium (2004).Google Scholar
  3. 3.
    H. Igari, H. Nakanura, and S. Okaguchi, Proc. 21th Int. Offshore Polar Eng. Conf., pp. 569–574, Hawaii, USA (2011).Google Scholar
  4. 4.
    G. Shigesato, Y. Shinohara, T. Hara, M. Sugiyama, and H. Asahi, Proc. 16th Int. Offshore Polar Eng. Conf., pp. 2983–2987, Lisbon, Portugal (2007).Google Scholar
  5. 5.
    A. H. Cottrell, T. Metall. Soc. AIME 212, 192 (1958).Google Scholar
  6. 6.
    G. E. Dieter, Mechanical Metallurgy, 3rd ed., pp. 184–240, McGraw-Hill Book, Co., New York, USA (1988).Google Scholar
  7. 7.
    J. Lee, M. Lee, H. Do, S. Kim, and N. Kang, Korean J. Met. Mater. 52, 113 (2014).CrossRefGoogle Scholar
  8. 8.
    M. W. Hukle, B. D. Newbury, D. B. Lillig, J. J. Regina, and A. M. Horn, Proc. 27th Int. Conf. on Offshore Mech. and Arctic Eng., pp. 16–19, Estoril, Portugal (2008).Google Scholar
  9. 9.
    T. Hara, Y. Shinohara, Y. Hattori, T. Muraki, and N. Doi, Proc. 21th Int. Offshore Polar Eng. Conf., pp. 575–580, ISOPE, Hawaii, USA (2011).Google Scholar
  10. 10.
    J. Hu, L.-X. Du, J.-J. Wang, C.-R. Gao, T.-Z. Yang, A.-Y. Wang, et al. Metall. Mater. Trans. A, 44, 4937 (2013).CrossRefGoogle Scholar
  11. 11.
    X.-L. Yang, Y.-B. Xu, X.-D. Tan, and D. Wu, Mat. Sci. Eng. A 607, 53 (2014).CrossRefGoogle Scholar
  12. 12.
    K. S. Kim, S. S. Kim, K. K. Park, K. M. Noh, and K. A. Lee, Korean J. Met. Mater. 51, 629 (2013).CrossRefGoogle Scholar
  13. 13.
    R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, Met. Mater. Int. 21, 85 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Shi, Z. Yan, Y. Liu, X. Yang, Z. Qiao, B. Ning, Met. Mater. Int. 20, 19 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. Shinohara, T. Hara, E. Tsuru, and H. Asahi, Proc. 16th Int. Offshore Polar Eng. Conf., pp. 2949–2954, Lisbon, Portugal (2007).Google Scholar
  16. 16.
    D. B. Lillig, Proc. 18th Int. Offshore Polar Eng. Conf., pp. 1–12, Vancouver, Canada (2008).Google Scholar
  17. 17.
    C. S. Becquart and C. Domain, Curr. Opin. Solid St. M. 16, 115 (2012).CrossRefGoogle Scholar
  18. 18.
    N. Ishikawa, H. Sueyoshi, and N. Shikanai, Proc. 13th Int. Offshore and Polar Eng. Conf., pp. 43–49, Osaka, Japan (2009).Google Scholar
  19. 19.
    H. K. Sung, D. H Lee, S. Y. Shin, S. Lee, Y. Ro, C. S. Lee, et al. Metall. Mater. Trans. A 46A, 3989 (2015).CrossRefGoogle Scholar
  20. 20.
    T. Araki, Atlas for Bainitic Microstructures, pp. 1–100, ISIJ, Tokyo, Japan (1992).Google Scholar
  21. 21.
    G. Krauss and S. W. Thompson, ISIJ Int. 35, 937 (1995).CrossRefGoogle Scholar
  22. 22.
    H. K. D. H. Bhadeshia, Mat. Sci. Eng. A 378, 34 (2004).Google Scholar
  23. 23.
    D.-H. Seo, J.-Y. Yoo, W.-H. Song, W.-Y. Cho, and K.-B. Kang, Proc. 19th Int. Offshore Polar Eng. Conf., pp. 61–66, Osaka, Japan (2009).Google Scholar
  24. 24.
    T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi, Proc. 19th Int. Offshore Polar Eng. Conf., pp. 73–79, Osaka, Japan (2009).Google Scholar
  25. 25.
    R. B. McLellan and M. L. Wasz, J. Phys. Chem. Solids 54, 583 (1993).CrossRefGoogle Scholar
  26. 26.
    H.-J. Hu, G. Xu, L. Wang, M.-X. Zhou, and Z.-L. Xue, Met. Mater. Int. 21, 929 (2015).CrossRefGoogle Scholar
  27. 27.
    H. K. D. H. Bhadeshia, Bainite in Steels, Theory and Practice, 3rd ed., pp. 1–616, Maney Publishing, London, UK (2015).Google Scholar
  28. 28.
    E. Kozeschnik and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 24, 343 (2008).CrossRefGoogle Scholar
  29. 29.
    D. Quidort and Y. Bréchet, Scripta Mater. 47, 151 (2002).Google Scholar
  30. 30.
    S. Shanmugam, N. K. Ramisetti, R. D. K. Misra, J. Hartmann, and S. G. Jansto, Matr. Sci. Eng. A 478, 26 (2008).CrossRefGoogle Scholar
  31. 31.
    D. Hull and D. J. Bacon, Introduction to Dislocations, 5th ed., pp. 1–272, Elsevier Ltd., Amsterdam, Netherlands (2011).CrossRefGoogle Scholar
  32. 32.
    C. S. Shin, M. C. Five, M. Verdier, and K. H. Oh, Philos. Mag. 83, 3691 (2003).CrossRefGoogle Scholar
  33. 33.
    T. Waterschoot, B. C. De Cooman, A. K. De, and S. Vandeputte, Metall. Mater. Trans. A 34, 781 (2003).CrossRefGoogle Scholar
  34. 34.
    J. W. Choi, J. W. Lee, J. H. Lee, D. J. Kim, and H. U. Hong, Korean J. Met. Mater. 53, 1 (2015).CrossRefGoogle Scholar
  35. 35.
    H. S. Lee, B.-J. Yoon, J.-Y. Choi, and K.-T. Park, Korean J. Met. Mater. 53, 608 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hyo Kyung Sung
    • 1
  • Dong Ho Lee
    • 2
  • Sunghak Lee
    • 2
  • Byeong-Joo Lee
    • 3
  • Seung-Pyo Hong
    • 4
  • Young-Woon Kim
    • 4
  • Jang Yong Yoo
    • 5
  • Byoungchul Hwang
    • 6
  • Sang Yong Shin
    • 7
  1. 1.Department of Materials Science and Engineering, ReCAPTGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangRepublic of Korea
  3. 3.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
  4. 4.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  5. 5.POSCOA Research Group Team, Technical Research LaboratoriesPOSCOGwangyangRepublic of Korea
  6. 6.Department of Materials Science and EngineeringSeoul National University of Science and TechnologySeoulRepublic of Korea
  7. 7.School of Materials Science and EngineeringUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations