Metals and Materials International

, Volume 23, Issue 3, pp 554–561 | Cite as

Analysis of interface solid-state reaction on dissimilar ultrasonic spot welding of Al-Mg alloys



The solid-state joining nature of the ultrasonic spot welding (USW) process has been proven useful in the fields where joining applications involve dissimilar lightweight materials. This study focused on the USW of challenging dissimilar aluminum (Al)-magnesium (Mg) alloys to gain a better understanding of the dominant factors of joint performance with particular emphasis on proper lap-joint positioning. Weld qualities of dissimilar ultrasonic spot welds, classified through a series of experiments, were determined. Process parameters effects, such as failure load and fracture morphologies, showed distinctions between two dissimilar welds based on lap-joint position. Characteristic distinctions between welding process parameters and material combinations (lap-positioning) were found. Incomplete deformation zones were found during USW of Mg/Al combination, yet they were noticeable and almost the same size as the horn diameter. It can be found that proper lap-positioning of the top part of the specimen is important for efficient utilization of the USW process.


welding alloys dissimilar welds interface failure load 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Watanabe, H. Itoh, A. Yanagisawa, and M. Hiraishi, Weld. Int. 23, 633 (2009).CrossRefGoogle Scholar
  2. 2.
    N. Wright, J. D. Robson, and P. B. Prangnell, SAE Technical paper, 2009-01-0027 (2009).Google Scholar
  3. 3.
    G. D. Janaki Ram, C. Robinson, Y. Yang, and B. E. Stucker, Rapid Prototyping J. 13, 226 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. C. Chen, D. Bakavos, A. Gholinia, and P. B. Prangnell, Acta Mater. 60, 2816 (2012).CrossRefGoogle Scholar
  5. 5.
    C. Q. Zhang, J. D. Robson, O. Ciuca, and P. B. Prangnell, Mater. Charact. 97, 83 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Wang, Y. Li, P. Liu, and H. Geng, J. Mater. Process. Tech. 205, 146 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Panteli, J. D. Robson, I. Brough, and P. B. Prangnell, Mat. Sci. Eng. A 556, 31 (2012).CrossRefGoogle Scholar
  8. 8.
    L. Liu, D. Ren and F. Liu, Materials 7, 3735 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Park, S. Chung, J. Noh, K. Kim, and C. Kang, Met. Mater. Int. 22, 501 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Macwan and D. L. Chen, Mater. Design 84, 261 (2015).CrossRefGoogle Scholar
  11. 11.
    V. K. Patel, D. L. Chen, and S. D. Bhole, Theor. Appl. Lett. 4, 041005 (2014).CrossRefGoogle Scholar
  12. 12.
    H. S. Shin and M. de Leon, J. Mater. Process. Tech. 224, 222 (2015).CrossRefGoogle Scholar
  13. 13.
    M. de Leon and H. S. Shin, J. Mater. Process. Tech. 243, 1 (2017).CrossRefGoogle Scholar
  14. 14.
    J. D. Robson, A. Panteli, and P. B. Prangnell, Sci. Technol. Weld. Joi. 17, 447 (2012).Google Scholar
  15. 15.
    AA 5000 Series (Aluminum-Magnesium Wrought Alloy), http://www. makeitfrom. com/(accessed November 22, 2015).Google Scholar
  16. 16.
    AZ31B (3. 5312, M11311) Magnesium, http://www. makeitfrom. com(accessed November 22, 2015).Google Scholar
  17. 17.
    A. Kostka, R. S. Coelho, J. D. Santosb, and A. R. Pyzalla, Scripta Mater. 60, 953 (2009).CrossRefGoogle Scholar
  18. 18.
    T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, 2nd Ed., p. 1510, ASM International, Ohio, USA (1990).Google Scholar
  19. 19.
    Y. Sato, S. Hwan, C. Park, M. Michiuchi, and H. Kokawa, Scripta Mater. 50, 1233 (2004).CrossRefGoogle Scholar
  20. 20.
    L. Panteli, Y. Chen, D. Strong, X. Zhang, and P. Prangnell, JOM 64, 414 (2012).Google Scholar
  21. 21.
    Y. Sato, A. Shiota, H. Kokawa, K. Okamoto, Q. Yang, and C. Kim, Sci. Technol. Weld. Joi. 15, 319 (2010).CrossRefGoogle Scholar
  22. 22.
    D. Dietrich, D. Nickel, M. Krause, T. Lampke, M. P. Coleman, and V. Randle, J. Mater. Sci. 46, 357 (2011).Google Scholar
  23. 23.
    D. Choi, B. Ahn, C. Lee, Y. Yeon, K. Song, and S. Jung, Intermetallics 19, 125 (2011).CrossRefGoogle Scholar
  24. 24.
    V. K. Patel, Ph. D. Thesis, p. 171, Ryerson University, Toronto (2014).Google Scholar
  25. 25.
    Y. C. Chen and K. Nakata, Scripta Mater. 58, 433 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mechanical Design EngineeringAndong National UniversityAndongRepublic of Korea

Personalised recommendations