Metals and Materials International

, Volume 23, Issue 3, pp 444–449 | Cite as

Effects of tensile twinning on the stretch formability of Mg

  • Joong Won Park
  • Sang Jun Park
  • Kwang Seon Shin


This study examined the influences of twinning during the Erichsen test. {10-12} tensile twinning plays the critical role in Mg alloys. Alloy elements and grain size are important factors that determine the formation of {10-12} tensile twins at room temperature. Mg-6.0Zn(Z6) and Mg-6.0Zn-0.3Ca(ZX60) alloys were fabricated and their grain size was varied under different annealing conditions. Tensile twinning is promoted by the addition of Ca, as assessed from measurements of the microstructure and the viscoplastic self-consistent calculations. The coarse-grain Ca-containing alloy showed the largest amount of tensile twinning. However, the stretch formability increased with grain size up to a certain point and then decreased. It can be inferred that microstructures with large grains activated the tensile twin, which became origins of cracks. The results of the small Erichsen test showed that tensile twinning contributes to high stretch formability releasing the stress concentration in the grain boundaries but the interaction between twin and slip causes cracks as the grain size increases.


rolling twinning erichsen test alloying elements grain size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. Agnew, M. H. Yoo, and C. N. Tome, Acta Mater. 49, 4277 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Yuasa, N. Miyazawa, M. Hayashi, M. Mabuchi, and Y. Chino, Acta Mater. 83, 294 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Ando and H. Tonda, Mater. T. JIM 41, 1188 (2000).CrossRefGoogle Scholar
  4. 4.
    H. Yan, S. W. Xu, R. S. Chen, S. Kamado, T. Honma, and E. H. Han, J. Alloy. Compd. 566, 98 (2013)CrossRefGoogle Scholar
  5. 5.
    B. C. Suh, J. H. Kim, J. H. Hwang, M. S. Shim, and N. J. Kim, Scientific Reports 6, 22364 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Y. Lee, Y.-S. Yun, W.-T. Kim, and D.-H. Kim, Met. Mater. Int. 20, 885 (2014).CrossRefGoogle Scholar
  7. 7.
    D. W. Kim, B. C. Suh, M. S. Shim, J. H. Bae, D. H. Kim, and N. J. Kim, Metall. Mater. Trans. A 44, 2950 (2013).CrossRefGoogle Scholar
  8. 8.
    S. J. Park, H. C. Jung, and K. S. Shin, Met. Mater. Int. 22, 1055 (2016).CrossRefGoogle Scholar
  9. 9.
    S. L. Shang, W. Y. Wang, B. C. Zhou, Y. Wang, K. A. Darling, and L. J. Kecskes, Acta Mater. 67, 168 (2014).CrossRefGoogle Scholar
  10. 10.
    M. A. Meyers, O. Vohringer, and V. A. Lubarda, Acta Mater. 49, 4025 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Z. Bian and K. S. Shin, Met. Mater. Int. 5, 999 (2013).CrossRefGoogle Scholar
  12. 12.
    M. R. Barnett, Z. Keshavarz, A. G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).CrossRefGoogle Scholar
  13. 13.
    Z. R. Zeng, M. Z. Bian, S. W. Xu, C. H. J. Davies, N. Birbilis, and J. F. Nie, Scripta Mater. 108, 6 (2015).CrossRefGoogle Scholar
  14. 14.
    J. J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and E. Martin, Acta Mater. 5, 2046 (2011).CrossRefGoogle Scholar
  15. 15.
    H.-T. Son, Y.-H. Kim, J.-H. Kim, H.-S. Yoo, and J.-W. Choi, Korean J. Met. Mater. 53, 336 (2015).CrossRefGoogle Scholar
  16. 16.
    R. Cottam, J. Robson, G. Lorimer, and B. Davis, Mat. Sci. Eng. A 485, 375 (2008).CrossRefGoogle Scholar
  17. 17.
    A. Jain and S. R. Agnew, Mat. Sci. Eng. A 462, 29 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. Wang and H. Choo, Acta Mater. 81, 83 (2014).CrossRefGoogle Scholar
  19. 19.
    K. S. Shin, K. S. Choi, J. H. Hwang, and K. Lee, Korean J. Met. Mater. 53, 569 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Somekawa, A. Singh, and T. Mukai, Phil. Mag. Lett. 89, 2 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Joong Won Park
    • 1
  • Sang Jun Park
    • 1
  • Kwang Seon Shin
    • 1
  1. 1.Magnesium Technology Innovation Center, Research Institute of Advanced Materials School of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations