Metals and Materials International

, Volume 23, Issue 3, pp 603–609 | Cite as

Enhanced hydrogen evolution properties obtained by ultrasonic-cyclic voltammetry modification of C-supported PtCu thin film catalyst

  • Sha Yi
  • Bin Yang
  • Zhan-Sheng Zhang


Carbon-supported Pt-Cu (Pt-Cu/C) bimetallic catalyst was synthesized by Ion Beam Sputtering technology and subsequently annealed in vacuum and electrochemically etched by Ultrasonic-Cyclic Voltammetry (US-CV). Electrochemical measurements indicate that the sample was modified electrochemically by US-CV shows higher catalytic activity towards hydrogen evolution reaction than pure Pt/C. Scanning and transmission electron microscopy and electronic differential system analysis reveal that the surface of post-processed catalyst produced PtCu@Pt core-shell structure which increasing the efficiency of Pt. Transmission electron microscope analysis displays that on the surface of PtCu@Pt core-shell particles detects lattice compressive strain, the lattice compression variable is around 1.12%. X-ray photoelectron spectroscopy analysis confirms that the Pt4f7/2 binding energy of the post-processed PtCu/C is 71.10 eV, decreased by 0.2 eV compared to pure Pt/C (71.3 eV). It can be inferred that the enhancement of catalytic property attribute to the Cu atoms modified the geometric structure and electronic structure of the Pt atoms.


thin films ion-beam processing surface modification electrochemistry hydrogen evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. D. Liu, J. W. Zheng, G. F. Shao, T. E. Fan, and Y. H. Wen, Chinese Phys. B 24, 033601 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Nsabimana, X. J. Bo, and Y. F. Zhang, J. Colloid Interf. Sci. 428, 133 (2014).CrossRefGoogle Scholar
  3. 3.
    L. H. Ou and S. L. Chen, Sci. China Chem. 58, 586 (2015).CrossRefGoogle Scholar
  4. 4.
    N. Ruiz, A. R. Pierna, and M. Sanchez, Int. J. Hydrogen Energ. 39, 5319 (2014).CrossRefGoogle Scholar
  5. 5.
    X. Liu, W. Z. Lang, L. L. Long, C. L. Hu, and L. F. Chu, Chem. Eng. J. 247, 183 (2014).CrossRefGoogle Scholar
  6. 6.
    J. H. Park, Y. Sohn, D. H. Jung, P. Kim, and J. B. Joo, J. Ind. End. Chem. 36, 109 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Sohn, J. H. Park, P. Kim, and J. B. Joo, Curr. Appl. Phys. 15, 993 (2015).CrossRefGoogle Scholar
  8. 8.
    G. T. Fu, H. M. Liu, N. K. You, J. Y. Wu, Y. W. Tang, Y. Chen, et al. Nano Res. 9, 755 (2016).CrossRefGoogle Scholar
  9. 9.
    F. Papa, A. Miyazaki, M. Scurtu, A. C. Ianculescu, and I. Balint, J. Nanopart. Res. 16, 2249 (2014).CrossRefGoogle Scholar
  10. 10.
    S. L. Zhu, J. L. He, X. J. Yang, Z. D. Cui, and L. L. Pi. Electrochem. Commun. 13, 250 (2011).Google Scholar
  11. 11.
    K. Liang, X. Z. Tang, B. Q. Wei, and W. C. Hua, Mater. Res. Bull. 48, 3829 (2013).CrossRefGoogle Scholar
  12. 12.
    J. J. Song, C. Yang, H. M. Zhang, H. Y. Hu, C. Y. Zhou, and B. Wang, Sci. China Phys. Mech. Astron. 55, 2033 (2012).CrossRefGoogle Scholar
  13. 13.
    K. G. Sonnad, K. C. Hammond, R. M. Schwartz, and S. A. Veitzer, Nucl. Instrum. Meth. A 754, 83 (2014).CrossRefGoogle Scholar
  14. 14.
    L. Zheng, C. B. Jiang, J. X. Shang, and H. B. Xu, Chinese Phys. B 18, 1647 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Yang, B. Yang, J. C. Peng, Z. J. Zhao, and Y. M. Zhao, RSC Advances 5, 20981 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Pournara, D. Kovala-Demertzi, N. Kourkoumelis, S. Georgakopoulos, and I. D. Kostas, Catal. Commun. 43, 57 (2014).CrossRefGoogle Scholar
  17. 17.
    X. K. Luo, R. Li, L. Huang, and T. Zhang, Corros. Sci. 67, 100 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Nampoothiri, R. S. Harini, S. K. Nayak, B. Raj, and K. R. Ravi, J. Alloy. Compd. 683, 370 (2016).Google Scholar
  19. 19.
    S. S. Wu, L. F. Liu, Q. Q. Ma, Y. W. Mao, and P. An, China Foundry 9, 201 (2012).Google Scholar
  20. 20.
    W. He, X. Z. Tang, S. X. Wang, and L. Wang, Environ. Sci. Technol, S, 134 (2005).Google Scholar
  21. 21.
    Z. Xu, H. M. Zhang, S. S. Liu, B. S. Zhang, H. X. Zhong, and D. S. Su, Int. J. Hydrogen Energ. 37, 17978 (2012).CrossRefGoogle Scholar
  22. 22.
    W. H. Zhang and M. Yue, Chinese J. Power Sources 34, 223 (2010).Google Scholar
  23. 23.
    C. Y. Tang, Z. Z. Wu, and D. Z. Wang, Chemcatchem 8, 1961 (2016).CrossRefGoogle Scholar
  24. 24.
    W. Jung, T. Xie, T. Kim, P. Ganesan, and B. N. Popov, Electrochim. Acta 167, 1 (2015).CrossRefGoogle Scholar
  25. 25.
    H.-H. Wang, Z.-Y. Zhou, Q. Yuan, N. Tian, and S.-G. Sun, Chem. Commun. 47, 3047 (2011).Google Scholar
  26. 26.
    P.-S. Yu, C.-T. Liu, B. Feng, J.-F. Wan, L. Li, and C.-Y. Du, Int. J. Min. Met. Mater. 22, 1101 (2015).CrossRefGoogle Scholar
  27. 27.
    P. Mani, R. Srivastava, and P. Strasser, J. Phys. Chem. C 112, 2770 (2008).Google Scholar
  28. 28.
    P. Bera, K. R. Priolkar, A. Gayen, P. R. Sarode, M. S. Hegde, G. N. Subbanna, et al. Chem. Mater. 15, 2049 (2003).CrossRefGoogle Scholar
  29. 29.
    N. Rajalakshmib, H. Ryub, M. M. Shaijumona, and S. Ramaprabhua, J. Power Sources 140, 250 (2005).CrossRefGoogle Scholar
  30. 30.
    Z. Zhu, F. Tao, F. Zheng, R. Chang, Y. M. Li, G. A. Somorjai, et al. Nano Lett. 12, 1491 (2012).CrossRefGoogle Scholar
  31. 31.
    F. Ersan, G. Gökoglu, and E. Aktürk. Appl. Surf. Sci. 303, 306 (2014).CrossRefGoogle Scholar
  32. 32.
    X. Jia, S. Wang, and Y Fan, J. Catal. 327, 54 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKunming University of Science and TechnologyKunmingP. R. China

Personalised recommendations